Great content @Dmitriy. I am suppose to deploy a enterprise production level AKS, this video is going to be really resourceful.
@JC-ub7qu7 күн бұрын
This is half baked. You must first determine what kind of data is missing (MCAR, MNAR, MAR) and make the decision to drop/ fillna based on which it is or you must accept the null hypothesis given bad sampling data.
@hebronwatson95328 күн бұрын
excellent video. the voiceover was better than usual. Would you consider partnering with other engineering channels to grow your audience?
@hebronwatson95328 күн бұрын
excellent notes and resource!
@controlcoputer618710 күн бұрын
*fireworks: weeee* *the other firework: AAAAAAAAAAA HELP ME IM GOING TO OUTER SPACEEEEEEEEEEEEEEEEEEEEEE*
@BEAST_BRITTO_0812 күн бұрын
finally i found the persion really put high efforts ,, the valuable one ,, thanks bro ,, this is the best vedio i seen in 2024,,
@ChuanChihChou14 күн бұрын
Overall seems somewhat dated: e.g. FTRL-Proximal (2011), DLRM (Meta, 2019) even one year ago Not 100% which parts are still up-to-date & to what extent
@mrvfino17 күн бұрын
Ngl you got me on the first half. I thought you were about to scrape messages and their profiles to analyze the gift they might want using the data 😂
@himek07018 күн бұрын
Hey, what do you want for Christmas? Copy paste Excel. Why extra steps? Couse you had to send them link in first place
@sidjain865119 күн бұрын
Learnt a lot on Animation. Thanks Andrei
@danparish1344Ай бұрын
Not a good answer. You should only remove the 30% if you can verify it is a completely random occurrence that the data is missing. Using the mean to impute also will bias your data or best case if random, just fill it with bad data. The real answer is to build a second model to predict the missing values with all of the same features and output feature to predict the feature with the missing values, then impute the missing values with the prediction, but not with the prediction Irish but randomly with the prediction +/- the prediction error. Now you have a model that is likely not biased by your imputations.
@abdulmanan707Ай бұрын
Thanks for sharing
@abdulmanan707Ай бұрын
Thanks alot for sharing
@User_Win7Ай бұрын
AI be taking our jobs now
@fsfaysalcseАй бұрын
Best compose animation video i’ve ever seen. Can i have this guy LinkedIn ?
@razuwarzoneigАй бұрын
This is awesome lol
@SeanKearney-g7dАй бұрын
Dude at the end thought it was his presentation
@ellen_livesАй бұрын
Thats really sweet, keep coding!
@thejonteАй бұрын
5 min work won your fair?
@yeetogami2575Ай бұрын
How are you hosting the website for public access?
@zububabu8249Ай бұрын
Bruh thats like 10 min work tops (wothout ai i.e if u are already using a api) student in preuniversity make stuff like these for fun
@jcsc2001Ай бұрын
Mentor + ai?
@nilavasen8631Ай бұрын
Very informative videos.
@obliteratormegalul6368Ай бұрын
ah dude stop recommending ads to me youtube!
@FengFamily-u2cАй бұрын
Wonderful presentation Is there a link to the slides?
@AlfredDavid-p3d2 ай бұрын
Les conseils sur l'élaboration de SLA pour renforcer la confiance ont été pour moi un point fort. Il est rafraîchissant de voir les SLA considérés comme un outil relationnel, et pas seulement comme une mesure de conformité.
@NusratJanan-cd4xz2 ай бұрын
This talk brilliantly demystifies service reliability, showing a seamless path from SLIs to AI-driven excellence. Clear, insightful, and packed with actionable strategies!
@NusratJahan-c6g2 ай бұрын
Loved the deep dive into SLIs, SLOs, and SLAs! It’s so helpful to see how each metric plays a role in the bigger picture of service reliability and customer satisfaction.
@MishaKuzmih2 ай бұрын
I really appreciated the real-world examples from top companies-it adds so much context to see how AI and machine learning are already transforming service reliability.
@shoshomohamed59172 ай бұрын
Nice Nice discusssion
@mony-o5n2 ай бұрын
👍👍👍
@priyanshukumar26062 ай бұрын
Wow, one of the best videos on animation, hope to see more content from this mentor.
@Jobayer5702 ай бұрын
Nice Nice discussion
@наталипотапова-ь2ь2 ай бұрын
Очень классно всё сказали просто супер
@МиланаКотова-ъ4ш2 ай бұрын
Пост очень понравился большое спасибо
@КристинаПетрова-р1ц2 ай бұрын
Очень классный пост
@RoseRose-xy9ib2 ай бұрын
❤
@marcellodias23772 ай бұрын
Great
@linezich86803 ай бұрын
Never Skip the fundamentals !
@akashramachandran45583 ай бұрын
Excellent resource for MLE L5/L6 interview prep !
@Lantern.Aatankharta3 ай бұрын
Genius ho chote bhai. Samai Raina ka show dekhkar aaya hu
@hammadafzal84793 ай бұрын
Why there is not comments yet? It requires a lot of effort to create video material like this and the efforts has to be appreciated.
@hammadafzal84793 ай бұрын
Good Video
@chrisogonas4 ай бұрын
Incredible! Thanks for sharing.
@ArunKumar-bp5lo4 ай бұрын
Binary class- cross entropy loss
@whoknows66744 ай бұрын
Where exactly can I see my cookies profile?
@serlok46884 ай бұрын
struct ContentView: View { let letters = Array("Hello SwiftUI") @State private var enabled = false @State private var dragAmount = CGSize.zero var body: some View { HStack(spacing: 0) { ForEach(0..<letters.count, id: \.self) { num in Text(String(letters[num])) .padding(5) .font(.title) .background(enabled ? .blue : .red) .offset(dragAmount) .animation(.linear.delay(Double(num) / 20), value: dragAmount) } } .gesture( DragGesture() .onChanged { dragAmount = $0.translation } .onEnded { _ in dragAmount = .zero enabled.toggle() } ) } } I CANNOT DO THIS SIMPLE ANIMATION IN SWIFTUI WITH COMPOSE CODE, CAN YOU HELP ME?
@KooshaTahmasebipour4 ай бұрын
Thanks a lot for the excellent presentation! Quick question, shouldn't we prioritize "precision" over "recall" for the retrieval stage? It was mentioned in the video that recall is more important in the retrieval, however, we should ensure there aren't many FPs in the retrieval stage output, and that would make precision more important.
@jaden258214 күн бұрын
Retrieval aims at recall while ranking aims at precision. FP in recall will not be ranked high in the ranking stage.
@bardbard24 ай бұрын
That's one of the correct ways to learn algos, nice.