Incredible waste of time. The video doesn't even attempt to explain why would the vectors of each matrix represent different categories.
@ibrahimfangary82135 ай бұрын
excellent explanation, as a data science from a biology background this really helped
@jijimolvj88237 ай бұрын
Your class is good 🙏🏼
@iTzTomy049 ай бұрын
You’re my guardian angel
@siddharthvarshney171011 ай бұрын
Does this enable older designers to show the AI an image of their hand-drawn designs and get a STEP or IGES encoded 3D file for use in applications? I am looking for a use case where mixed reality headset cameras can capture image information and process it into a shareable 3D format!
@Anandhu-X Жыл бұрын
4:37 Say if the p(X=4)=0.5 What is the interpretation of this exact statement? Could it be that the probability of x occurring arbitrarily close to 4 is 50%?
@Anandhu-X Жыл бұрын
Thank you
@parmisbathaeiyan9955 Жыл бұрын
You’re my guardian angel
@greyreynyn Жыл бұрын
AHH!!! I’ve been trying to find more content from you since you left Talking Machines for years!! So glad I finally found this! I wonder how to fix the squeaky pen 🤔
@nivethanyogarajah1493 Жыл бұрын
Very nice intuition video with the perfect amount of math!
@nilothpalbhattacharya8230 Жыл бұрын
Really well explained
@tan-uz4oe2 жыл бұрын
I'm wondering about the importance sampling. If I understand correctly, we need both pi(x) and q(x) pdfs to use IM. But shown in the previous video "COS 302: Pseudo-Random Numbers", we can draw samples for any arbitrary pi(x) using the CDF + uniform rand trick. In that case, why wouldn't we use the trick with pi and draw from pi directly? I know there are cases where IM is useful, especially in ML/RL for learning or estimating some expectation from _offline data_ . But I can't see the reason why we choose to _sample_ from q instead of pi when we have both pdfs. What am I missing?
@intelligentsystemslab9072 жыл бұрын
There are two reasons: 1) if you only know pi, computing the CDF still requires an integral, which is what you're trying to avoid, and 2) importance sampling generalizes straightforwardly to multiple dimensions, where as inverse transform sampling is much trickier.
@mr.p26652 жыл бұрын
Underrated channel
@raideryvs55952 жыл бұрын
Great explanation !
@mohammadpourheydarian58772 жыл бұрын
Very beautiful. Thank you.
@melontusk73582 жыл бұрын
Just brilliant.
@DrScaryShow2 жыл бұрын
Awesome. Thank you.
@ZauberRay2 жыл бұрын
Excellent explanation!! Thanks
@nightlessbaron2 жыл бұрын
How does this whiteboard works?
@FrantisekNovak555 ай бұрын
it's a glass and image is then flipped
@yannickpezeu34192 жыл бұрын
Thanks
@CarlJohnson-jj9ic2 жыл бұрын
Is the ground truth set weighted by a average, max, common, rare, gravity, edges, node distribution or what?
@annapieroni18652 жыл бұрын
Thank you for the very clear explanation! I never took a stats class, so online resources like this help me survive upper division CS and ME classes. Much needed for fluids labs and speech processing!
@alexpablo902 жыл бұрын
Thanks so much, I like how you explain
@dialaabdrabbo77252 жыл бұрын
Thanks so much, nicely explained!
@galileo34313 жыл бұрын
PLEASE use another pen, I can't finish the video. Great explanation anyways!
@kanishkgarg4233 жыл бұрын
Thanks a ton!! It wasn’t only intuitive, you explained what is in the book with the exact notations which makes it easier for me to go back and solve problems there.
@kanishkgarg4233 жыл бұрын
Amazing lectures!! I assumed that i will flunk my class before I watched these. You somehow make it sound simple. Thanks a lot
@Sam123456323 жыл бұрын
I frickin love you man.
@Sam123456323 жыл бұрын
These videos are so amazingly awesome!!!
@mahdijavadi27473 жыл бұрын
loved it thanks !
@vi5hnupradeep3 жыл бұрын
Thankyou so much 💯
@KeyserTheRedBeard3 жыл бұрын
astonishing video Intelligent Systems Lab. I shattered that thumbs up on your video. Keep up the very good work.
@chrisk53213 жыл бұрын
Succinct.
@陳柏翰-e2i3 жыл бұрын
As a data engineer from a non-CS background, it's one of the most helpful materials I found on the internet for linear algebra. It gives a great intuition to understand the math and real-world examples. Huge thanks!
@arielserranoni3 жыл бұрын
I like your explanation, but the sound of your pen hitting the board is extremely disturbing!
@iliasaarab79223 жыл бұрын
Amazing vid!
@samirelzein10953 жыл бұрын
True that! Some Jupyter examples would ve made it complete :)
@159_vivekpatel53 жыл бұрын
Thanks 👌👌👌👌👌👌👌
@professorbland3 жыл бұрын
this is awesome I just need to find the time to watch all these and take notes
@approachableGoals3 жыл бұрын
The explanation is simple and elegant, thank you so much for making this brilliant video! I finally understand Bayes Theorem and marginal distribution!
@aelialaelia4773 жыл бұрын
So well done! And the graphic design of 3B1B helps a lot to maintain continuity with Grant's content so that even new viewers aren't disoriented by different visuals.
@andreacervantes24853 жыл бұрын
very good video
@nidhyaneducation71233 жыл бұрын
Please help me, how can I synchronise the animations with the audio? What I am thinking is that I should give long pauses by using `self.wait()` and then trim the video according to the narration. I suppose this is not the best method, please share your method if you have better one.