thank you for valuable topic please could you share you email would like to contact you have question if possible
@johnoluwasegun42754 күн бұрын
Kindly create tutorial to fill the voids
@techhive.20234 күн бұрын
sure
@kamyarlotfi-k7k10 күн бұрын
unfortunately this product doesn't support Iran
@techhive.202310 күн бұрын
yes of course
@kamyarlotfi-k7k12 күн бұрын
thank you sir
@techhive.202312 күн бұрын
Thanks
@kamyarlotfi-k7k12 күн бұрын
👏👏👏
@techhive.202312 күн бұрын
Thanks
@richie-k2g12 күн бұрын
Thanks for the breakdown! Just a quick off-topic question: I have a SafePal wallet with USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). How should I go about transferring them to Binance?
@techhive.202312 күн бұрын
In the SafePal app, find your USDT wallet.
@omidbagheri200913 күн бұрын
With greetings and respect and thanks for your efforts and affection. Please share the code.
@techhive.202312 күн бұрын
// Define the region of interest (Chennai, India) var chennai = ee.FeatureCollection("FAO/GAUL/2015/level2") .filter(ee.Filter.and( ee.Filter.eq('ADM1_NAME', 'Tamil Nadu'), ee.Filter.eq('ADM2_NAME', 'Chennai'), ee.Filter.eq('ADM0_NAME', 'India') )); Map.centerObject(chennai, 10); // Load VIIRS DNB data (Nighttime Lights) for a specific year range (e.g., 2020) var viirsNightLights = ee.ImageCollection("NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG") .filterBounds(chennai) .filterDate('2020-01-01', '2020-12-31') .select('avg_rad'); // Average radiance // Take the median to reduce noise across multiple months var nightLightsImage = viirsNightLights.median().clip(chennai); // Display the Night Light intensity layer Map.addLayer(nightLightsImage, { min: 0, max: 50, palette: ['black', 'yellow', 'red', 'white'] }, 'Urban Night Lights (2020)'); // Optionally, you can create a time series of night light intensity var startDate = '2015-01-01'; var endDate = '2020-12-31'; var timeSeries = ee.ImageCollection("NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG") .filterBounds(chennai) .filterDate(startDate, endDate) .select('avg_rad') .map(function(image) { var year = image.date().get('year'); return image.set('year', year); }); // Create a time series chart of night light intensity for Chennai var nightLightChart = ui.Chart.image.seriesByRegion({ imageCollection: timeSeries, band: 'avg_rad', regions: chennai, reducer: ee.Reducer.mean(), scale: 500, seriesProperty: 'year' }) .setOptions({ title: 'Night Light Intensity in Chennai (2015-2020)', vAxis: {title: 'Night Light Intensity (Average Radiance)'}, hAxis: {title: 'Year'}, lineWidth: 2, pointSize: 4 }); print(nightLightChart);
@Ramilacookware14 күн бұрын
🎉❤❤❤❤❤
@techhive.202312 күн бұрын
Thanks
@daeng_geospasial14 күн бұрын
great 👍
@techhive.202312 күн бұрын
Thanks
@coolsamuel435416 күн бұрын
Me has sido de gran ayuda con tus videos y tutoriales. Mil y más gracias de mi parte. Te lo agradezco.
@techhive.202316 күн бұрын
i unable to understand your language pls comment in english
@rajanihiwrale16 күн бұрын
Can u please provide the code???
@techhive.202316 күн бұрын
sure
@rajanihiwrale16 күн бұрын
Thanks y so much sir...
@techhive.202316 күн бұрын
Most welcome
@shefalikundu873118 күн бұрын
did you resample all layers? It is necessary or not?
@techhive.202317 күн бұрын
it is necessary to maintain similar datasets
@YHWH97918 күн бұрын
Commendable work!
@techhive.202318 күн бұрын
THANKING Your praise
@Ramilacookware19 күн бұрын
You can get time seris forest for each year❤❤❤❤❤😂🎉🎉🎉
@techhive.202319 күн бұрын
yes you can get it with sentinental image
@Ramilacookware19 күн бұрын
I think , we only have 1 water instead of low medium high water , so if you want to detect water , you must use 1 color for your palette for water , just detecting existing water
@techhive.202319 күн бұрын
You're correct that if we are only detecting existing water, using a single class for water (rather than distinguishing low, medium, or high water levels) simplifies the process. In this case, a single color in the palette for water is appropriate
@Ramilacookware19 күн бұрын
I don't understand, which area is matter and which area is it matter in gold mineral❤
@techhive.202319 күн бұрын
Gold-rich zones: Areas with high concentrations of gold, usually identified through geological surveys.
@omidbagheri200919 күн бұрын
Hello. Is it possible to share the code?
@techhive.202319 күн бұрын
Pls Check it with my channel description
@techhive.202319 күн бұрын
Pls Check it with my channel description
@Ramilacookware19 күн бұрын
I don't believe, oh my god , the code work🎉🎉🎉🎉🎉 😊
@techhive.202319 күн бұрын
Great 👍
@Ramilacookware19 күн бұрын
I got error for slope layer ???
@techhive.202319 күн бұрын
you have to configure with srtm data
@Ramilacookware19 күн бұрын
Can you share code , man?❤
@techhive.202319 күн бұрын
Pls Check it with my channel description
@YHWH97919 күн бұрын
Dear sir/madam, Can you share the code please.
@techhive.202319 күн бұрын
Pls Check it with my channel description
@daeng_geospasial21 күн бұрын
Great
@techhive.202319 күн бұрын
THANKS FOR Your SUPPORT
@Ramilacookware25 күн бұрын
Do you know difference between Index formula and regression formula for calculating pollution? 😂❤
@techhive.202325 күн бұрын
Used to express pollution levels in a standardized, interpretable way, typically as part of an Air Quality Index (AQI) or similar indices. It converts raw pollutant concentrations into a normalized value on a scale (e.g., 0-500).
@gezahagnnegash974025 күн бұрын
Three important parameters (RF, ET, and Soil moisture) for agriculture at the same time to monitor GW. Thanks for sharing
@techhive.202325 күн бұрын
So nice of you
@omidbagheri200925 күн бұрын
Mean Soil Moisture: Layer error: ImageCollection.load: ImageCollection asset 'ESA/CCI/SM/3_2' not found (does not exist or caller does not have access). Combined Recharge and Slope: Layer error: ImageCollection.load: ImageCollection asset 'ESA/CCI/SM/3_2' not found (does not exist or caller does not have access).
@techhive.202325 күн бұрын
1. Verify Dataset Availability The ESA CCI Soil Moisture dataset in GEE is typically available under a different name or version. To confirm: Go to the Google Earth Engine Data Catalog. Search for "ESA CCI Soil Moisture" to check the correct dataset name and path. Common datasets for soil moisture include: ESA/CCI/SM/DAILY/v04.5 ESA/CCI/SM/DAILY/v06.1 2. Update Your Script If the correct dataset is found, update your script to use the proper dataset path. For example: javascript Copy code // Load the ESA CCI Soil Moisture dataset var soilMoisture = ee.ImageCollection('ESA/CCI/SM/DAILY/v06.1'); // Print to verify print(soilMoisture); 3. Check Access Permissions Some datasets in GEE require you to request access. If ESA/CCI/SM/3_2 is a private or beta dataset, you might need to: Contact the dataset owner. Use an alternative publicly available dataset. 4. Alternative Soil Moisture Datasets If the dataset is not available, you can use these alternatives: SMAP (Soil Moisture Active Passive): NASA_USDA/HSL/SMAP10KM_soil_moisture (10km resolution). GLDAS (Global Land Data Assimilation System): NASA/GLDAS/V021/NOAH/G025/T3H for soil moisture at various depths. ERA5-Land: ECMWF/ERA5_LAND/HOURLY for soil moisture estimates. 5. Verify for "Combined Recharge and Slope" Layer If the issue persists for the Recharge and Slope layer, check the dataset name in a similar way. Datasets in GEE may have been updated, renamed, or replaced.
Can you please tell what is the point of of reclassifying ndvi when we already got biomass polygon and how will we get value in g/m2
@techhive.2023Ай бұрын
Consistency in Units (g/m²): NDVI can correlate with biomass density, especially when calibrated with ground-truth data. By establishing a relationship between NDVI values and biomass from sample data, you can extrapolate NDVI values to g/m² using regression or other statistical models
@a.kr.p7125Ай бұрын
@@techhive.2023 Okay thank you. please make more videos related to ecological work like alpha/beta diversity, landscape metrics, GPP, Canopy height, cover, fires disturbance, historical disturbance etc, if you know, subscribing
@techhive.202323 күн бұрын
THANKING For Your SUGGESTS TOPICS
@geraudnassouhounde6662Ай бұрын
Good
@techhive.2023Ай бұрын
Thanka
@naidujlАй бұрын
Hi would like to meet and greet for your work connect with ur email id
Plz fin Lahore Pakistan air quality through google earth engine.
@techhive.2023Ай бұрын
It is available from my code just change gps values of Lahore Pakistan
@mirwado1384Ай бұрын
@techhive.2023 sure sir
@zees1804Ай бұрын
Hi, is there a way to do this whole process in QGIS software? If yes, how?
@techhive.2023Ай бұрын
To prepare a Lineament Density Map from a Digital Elevation Model (DEM) in QGIS, you can follow these steps: Step 1: Load the DEM Open QGIS and load the DEM file by selecting Layer > Add Layer > Add Raster Layer and browsing to your DEM file. Click Open to display the DEM on the map canvas. Step 2: Generate Hillshade Go to Raster > Terrain Analysis > Hillshade. Select your DEM layer as the input and set the Azimuth (angle of the sun) and Altitude (height of the sun). Click Run to create a hillshade layer, which helps to visually enhance the linear features in the landscape. Step 3: Extract Lineaments Using Edge Detection Go to Processing Toolbox and search for Sobel filter or Edge detection (often available under Raster analysis plugins). Apply the filter on the hillshade layer to emphasize linear features, which will help in identifying lineaments. Step 4: Convert Lineaments to Vector Format Use Raster to Vector conversion to convert the highlighted lineaments into vector lines. Go to Raster > Conversion > Contour, choose the edge-detected layer, and set an appropriate interval to generate contour-like lineaments. Alternatively, you can use Digitize Lineament manually if the automatic extraction does not capture all lineaments accurately. Step 5: Create a Lineament Density Map Go to Vector > Analysis Tools > Line Density. Select the vectorized lineament layer as the input, define the search radius, and choose the cell size based on your map scale and desired resolution. Run the tool to create a line density raster layer, showing the density of lineaments across the area. Step 6: Style the Lineament Density Map Open the Layer Styling Panel and select the lineament density raster layer. Apply a color gradient (e.g., Red to Blue or White to Black) to represent low to high lineament densities. Adjust the Color Ramp and Transparency as needed for better visualization. Step 7: Save and Export Once the lineament density map is prepared, save it as a new raster or export it as an image or PDF by going to Project > Import/Export > Export Map. This workflow will give you a Lineament Density Map using QGIS and DEM data.
@naidujlАй бұрын
Hey hi can you share ur email id
@MaheshBhupathiparthasarathyАй бұрын
Please share your number
@techhive.2023Ай бұрын
8668059897
@MaheshBhupathiparthasarathyАй бұрын
Please share your number
@omidbagheri2009Ай бұрын
Hello, Honorable. Please share the code
@techhive.2023Ай бұрын
please check it drive.google.com/file/d/1XiA_eSWNwKrvWmrrM3fUe35t8rr9Y-uo/view?usp=sharing
@sanjaysinha4656Ай бұрын
Change title to - I will waste 5 mins of your time. Watch to end and I still wont give you what you are looking for.
@techhive.2023Ай бұрын
I am given correct procedure. you have to follow video step by step
@omidbagheri2009Ай бұрын
Hello, Honorable. Please share the code
@techhive.2023Ай бұрын
i am out of my office
@WontheraceАй бұрын
Very helpful Thank you for uploading such important educational content. Please upload more on Arc GIS related works. Thank you
@techhive.2023Ай бұрын
Sure I will
@RamilacookwareАй бұрын
A question? For example for ph soil 0 to 200 , i got range 60 to 80 , how to Normalize for range 0 to 14 ? ❤
@techhive.2023Ай бұрын
To normalize values from a 60-80 range to a 0-14 range, follow these steps: Subtract the minimum of the original range (60) from each value to adjust the starting point to zero. Divide by the range width (difference between 80 and 60) to scale values to a 0-1 range. Multiply by the new range (0-14) to convert values into this target range.
@RamilacookwareАй бұрын
@@techhive.2023 so complex , I prefer to divide scale 10 , 89 > pH 8.9 is it correct?
@RamilacookwareАй бұрын
Excuse me , I have a Question? I use a equations for water quality like CU Cr No2 no3 BOD cod ... , The Question is here that I get this equation from elsevier article , are these equation correct for use remote sensing?
@techhive.2023Ай бұрын
Relevance: Verify that the equations are validated for remote sensing or were tested on satellite data. Field-based equations might need adaptation for remote sensing. Data Compatibility: Confirm that the remote sensing data aligns with the parameters in the equations, particularly in terms of required spectral bands and resolution. Local Calibration: Water quality factors vary by region, so validate or locally calibrate equations if they were developed for different locations to ensure accuracy.
@nasreensultana1363Ай бұрын
Please make a tutorial on CA-MARCOV MODEL for future LULC PREDICTION
@techhive.2023Ай бұрын
Sure
@fakharulislam2519Ай бұрын
How to contact you Your email id, WhatsApp number etc
@fakharulislam2519Ай бұрын
Good work
@techhive.2023Ай бұрын
thanks
@fakharulislam2519Ай бұрын
How to export it ?
@techhive.2023Ай бұрын
// Load a Landsat 8 image var image = ee.Image('LANDSAT/LC08/C01/T1_SR/LC08_044034_20140318'); // Define a region of interest (ROI) var roi = ee.Geometry.Rectangle([-122.5, 37.0, -121.5, 38.0]); // Clip the image to the region of interest var clippedImage = image.clip(roi); // Export the image to Google Drive Export.image.toDrive({ image: clippedImage, description: 'Landsat_Export', folder: 'EarthEngineExports', // Specify your Drive folder scale: 30, // Set the pixel resolution region: roi, // Set the export region maxPixels: 1e9 // Set the maximum allowed number of pixels });