while running the code I am getting all loss values as NaN, filepath I have mentioned as suggested in runtime checkpoint_path = '/tmp/ckpt/checkpoint.model.keras.weights.h5'
@vedikaadhiman3885 ай бұрын
Thank you for this explanatory tutorial. I have also followed the same code for building ANN model on regression data having 4 input variables and 1 output variable and the model is built successfully. But now, I want to optimize the ANN model's solutions by Genetic Algorithm (GA). So, for this I am following "kzbin.info/www/bejne/opvNl6WofdGredksi=-DBs2Bki0p1LgABm", this tutorial as a reference but, they have used Random Classifier in place of ANN model to optimize their regression data. So, at their 19th step, they are calling their trained model into a new variable which is used later as a "fitness function" for GA. I am using "model_full = ann_viz(model, view=False, filename= 'network.gv', title='My Neural Network')" instead of their Rnadomforest classifier. So, please help me in this as I am getting error in "input_shape" i.e., "AttributeError: 'Dense' object has no attribute 'input_shape'". Although I have changed the input_shape as mentioned by you while building ANN modelto "4" as I have 4 variables.
@bangjaggi-ov1tn6 ай бұрын
thank you such amazing tutorial
@MOUADKARMOUN-q2p10 ай бұрын
hello i have a problem when i run the code with same data that you give, i got NaN value for loss mae mse mape val_loss val_mae val_mse val_mape
@sameutbouhaikizzeddine82383 ай бұрын
I have the same problem!
@mitajanaiitm3 ай бұрын
I am also getting same problem of NaN
@mayalestari2764 Жыл бұрын
Thanks
@karapureddyjaswanthreddy6053 Жыл бұрын
This is one of the best lectures on this topic. Great work.
@curosaquila9995 Жыл бұрын
My jupyter code on line 2 pd.read_csv('iris_dataset.csv') error "FileNotFoundError". what yould i do?
@pramishprakash Жыл бұрын
very helpful sir
@MS-du9jj Жыл бұрын
What if configuration are given : input data features 20, Hidden layer 1 - 10 neurons. How can we load this data ? Code or syntax
@DoubleMagnet2 жыл бұрын
Thank you for this. Can you show us how to get the result of a specific input?
@CarsNCrew2 жыл бұрын
wow
@computergyansagargk2 жыл бұрын
Nice video.
@prywatny2 жыл бұрын
Excellent work! Thanks!
@ESPjump2 жыл бұрын
Why did you define your own function for the normalization? Is not it equivalent to the StandardScaler() method from SKLearn?
@j2204932 жыл бұрын
Yes it is but he wanted to transform data as the old way
@OriginalPhilip2 жыл бұрын
can model.fit() be used on multiple datasets. For example, model.fit(normed_training_data1, train_labels1) model.fit(nromed_training_data2, train_labels 2) y_pred = model.predict(normed_test_data) I have 2 datasets that I want to train for the model
@arashhosseini10732 жыл бұрын
Thank you for the video; most places, including sklearn, show (X_train, X_test, y_train, y_test = train_test_split), why does your model have only two of them? is it because you separate the validation, or does it have any other reason?
@khushijain81463 жыл бұрын
Great video! Can you please provide the code.
@banderallogmany19123 жыл бұрын
For lines 20 & 21, what is the benefit of using validation?
@prathapkb1233 жыл бұрын
Wow... The best hands-on explanation in youtube so far. Good work bro. Thanks a lot. Learnt a lot!!
@promithaldar23303 жыл бұрын
please give the github repo
@WahranRai2 жыл бұрын
Expand description of video
@嗨您好-h1r3 жыл бұрын
Hello, your video is very good! But may I ask a question? Is this multi-class classifier is using OVO(One vs. One) or OVA(One vs. All) or RCC?
@LLFRA3 жыл бұрын
so no one-hot encoding is needed?
@hggaming9113 жыл бұрын
If all data types in your dataset are integer or float so no need to use any encoding. Encoding is used for transfering your non-numircal data to numerical values because the model can work only with numbers.
@beautyisinmind21633 жыл бұрын
@@hggaming911 if i want to change the order, what is the code for example "Iris-setosa" = 3, "Iris-versicolor"=2, Iris-virginica" =1 instead of writing "Iris-setosa" = 1, "Iris-versicolor"=2, Iris-virginica" =3
@kccchiu3 жыл бұрын
Nice video. I followed your tutorial and it worked brilliantly on my project. On thing at the end, did you made a mistake on the confusion matrix? it seems like you are plotting predicted results against predicted results.
@嗨您好-h1r3 жыл бұрын
yeah, i think he made a mistake on the confusion matrix, and i correct it into "cm = confusion_matrix(test_labels, y_pred)" but i'am not really sure that is correct. XD
@melissa13433 жыл бұрын
thank you, im wondering if we can get the code for this in github or something ?
@rahul29043 жыл бұрын
Great Video! Please share tutorial on Github and share the link in description. Thanks
@sehrishkhan88203 жыл бұрын
can you upload videos for Alex Net for multi class in python
@sabrinahuda73084 жыл бұрын
can this be apply for multi-label classification too? if yes, where is the part i can change the algorithm to multi-label ?
@ssophia38294 жыл бұрын
Thanks for very good video , may I know, where to get the script and also dataset? Do you provide that or available somewhere. Thanks sir
@josefranco484 жыл бұрын
Good video! Help me a lot. Pleaseeee keep doing them
@TheMindOfGregory4 жыл бұрын
Great video. Thank you.
@muntahairfan5514 жыл бұрын
can i have the code
@leventoz14084 жыл бұрын
Very nice!!!
@data_scientists_learning4 жыл бұрын
Thanks!!
@melihaslan95094 жыл бұрын
Amazing! Please continue on giving tutorials for us!