The preview image shows a different question, so I assume you solve something entirely unretated ... zero points ... Admission failed! The 'problem' you solve in this video is childsplay ... one look and you know the first answer ... the rest is a polynominal division and a quadratic equation. Why not solve the problem you showed in the preview image?
@key_board_x16 сағат бұрын
c + c + c = c.c.c 3c = c³ c³ - 3c = 0 c.(c² - 3) = 0 First case: c = 0 Second case: (c² - 3) = 0 → c² - 3 = 0 → c² = 3 → c = ± √3
@krishnannarayanan5252Күн бұрын
no relation with caption. irritating video. your students will get all the prizes inn the world. keep it up changing the sign in every problem.
@krishnannarayanan5252Күн бұрын
caption is for m cube plus m square. but u r solving for m cube minus m square. you r students will acquire Phd in just a minute.!!!!!!
@KenFullmanКүн бұрын
And you write 18 as 27-9 because you already know the answer. What a genius. That's the way to solve problems. Just have the answer before you start.
@TheBagarali2 күн бұрын
is this a joke?
@victorv48992 күн бұрын
It looks like a joke. 4(2**10 * 2**10 - 1)=4(1024*1024 - 1)=4*1,048,575=4,194,300 Now, in the age of IT even teenagers know that 2 power 10 is equal to 1024, AKA 1K.
@PhilippFlach3 күн бұрын
Quite easy: m = ln(50)/ln(5)/2 = 1.2153
@key_board_x3 күн бұрын
m.m.m + m.m = 18 m³ + m² = 18 m³ + m² - 18 = 0 → the aim, if we are to continue effectively, is to eliminate terms to the power 2 Let: m = x - (b/3a) → where: b is the coefficient for m², in our case: 1 a is the coefficient for m³, in our case: 1 m³ + m² - 18 = 0 → let: m = x - (1/3) [x - (1/3)]³ + [x - (1/3)]² - 18 = 0 [x - (1/3)]².[x - (1/3)] + [x² - (2/3).x + (1/9)] - 18 = 0 [x² - (2/3).x + (1/9)].[x - (1/3)] + x² - (2/3).x + (1/9) - 18 = 0 x³ - (1/3).x² - (2/3).x² + (2/9).x + (1/9).x - (1/27) + x² - (2/3).x + (1/9) - 18 = 0 x³ - (1/3).x - (484/27) = 0 → let: x = u + v (u + v)³ - (1/3).(u + v) - (484/27) = 0 (u + v)².(u + v) - (1/3).(u + v) - (484/27) = 0 (u² + 2uv + v²).(u + v) - (1/3).(u + v) - (484/27) = 0 u³ + u²v + 2u²v + 2uv² + uv² + v³ - (1/3).(u + v) - (484/27) = 0 u³ + v³ + 3u²v + 3uv² - (1/3).(u + v) - (484/27) = 0 u³ + v³ + (3u²v + 3uv²) - (1/3).(u + v) - (484/27) = 0 u³ + v³ + 3uv.(u + v) - (1/3).(u + v) - (484/27) = 0 u³ + v³ + (u + v).[3uv - (1/3)] - (484/27) = 0 → assume that: [3uv - (1/3)] = 0 ← equation (1) u³ + v³ + (u + v).[0] - (484/27) = 0 u³ + v³ - (484/27) = 0 ← equation (1) (1): [3uv - (1/3)] = 0 (1): uv = 1/9 (1): u³v³ = 1/729 ← this is the product P (2): u³ + v³ - (484/27) = 0 (2): u³ + v³ = 484/27 ← this is the sum S u³ & v³ are the solution of the following equation: z² - Sz + P = 0 z² - (484/27).z + (1/729) = 0 Δ = (- 484/27)² - [4 * (1/729)] = (484² - 4)/27² = 234252/27² = (81 * 4 * 723/)/27² = (2/3)² * 723 x = [(484/27) ± (2/3).√723]/2 x = (242/27) ± (1/3).√723 x = (242 ± 9√723)/3 ← these are u³ & v³ u³ = (242 + 9√723)/3 → u = ³√[(242 + 9√723)/3] v³ = (242 - 9√723)/3 → v = ³√[(242 - 9√723)/3] Recall: x = u + v Recall: m = x - (1/3) m = (u + v) - (1/3) m = ³√[(242 + 9√723)/3] + ³√[(242 - 9√723)/3] - (1/3) m ≈ 2.326259615
@mividajubila39323 күн бұрын
This is an utterly trivial problem. A 9th grader who just learned logarithms can solve it mentally. What "Olympiad" is it from?
@Anil241303 күн бұрын
Stupid solution
@Emdee56323 күн бұрын
I almost immediate lost you. Soooo.... WHAT is m? Did you write it down or did you mention it? Am I wrong if m = 1.4142 (root of 2)? Took me only seconds to do the calculation. If it is not 1.4142, then what is it?
@arnowelscher92133 күн бұрын
I hope you are not a teacher!
@RyanLewis-Johnson-wq6xs4 күн бұрын
4^11-4^1=4194300 It’s in my head.
@Luluandabsxluvcoquetted3 күн бұрын
No
@martinstephens46335 күн бұрын
by inspection!
@RichardA.-yi5sz4 күн бұрын
Right. No challenge.
@chriswiseman59855 күн бұрын
-1/3
@kathleenryan85455 күн бұрын
You gave me a headache! 🤕😳
@tassiedevil22006 күн бұрын
This problem, with the identical solution strategy, was posted back in November by "Math Beast". kzbin.info/www/bejne/m5rXk4GGj9WLhZIsi=L9mVmlGSPeOLfPN5
@davidseed29396 күн бұрын
For any question of this type. Find natural numbers a,b such that 1/a+1/b=1/c The solutions are a=b=2c and a=(c+1) . b=c(c+1) If sometimes helpful to look at an easier problem. c=2 1/2= 1/4+1/4 1/2=1/3+1/6
@tassiedevil22006 күн бұрын
@davidseed2939 Actually the set of three solutions is not exhaustive unless c is a prime number. For example 1/m+1/n=1/12 has eight solution pairs for positive integers.
@MiroslawNowicki-h1o8 күн бұрын
I wish you learn speak Oxford english, ?
@louisstringaro10558 күн бұрын
m = 2
@annpeichong22818 күн бұрын
Wrong at 7.06
@bobbyheffley49559 күн бұрын
m=1+log_2(81)
@hunghinsun21239 күн бұрын
We can do it by using division method for square root. It only needs a few lines to get the answer and we can also use similar methods to find cube root or fourth root.
@opytmx9 күн бұрын
When m^4 = 16, m may be 2, -2 or 2i, as (-4)^2 as well equals 16. I think, when you want to study in Stanford you should see that immediately, because that's school mathematics.
@allanvincent44509 күн бұрын
Whoa! Hold the red pen! you started out by dividing the values by 13 - then worked out the area of 13th the area, so 144 is not the answer. Think about it for just a few plank moments a smaller subset of the quad is 65*156 = 13*13 *5*12 = 169 * 60 >>>>>> 144. you have to multiply the 144 by 13 = 1872
@allanvincent44509 күн бұрын
think no oxford entry.
@franzbaur323510 күн бұрын
Realschulen Niveau
@theeternalsw0rd11 күн бұрын
If you have a set of equations with same base and exponent is a variable, it's typically better to subtract the equations so you can eliminate the need to use logarithms. 3^m + m^2 = 13 and you subtract 3^m - m^2 = 5 yields 2(m^2) = 8 yields m^2 = 4 yields m = 2. 3^m + m^2 = 65 and you subtract 3^m - m^2 = 1 yields 2(m^2) = 64 yields m^2 = 32 yields m = 4*sqrt(2). 4*sqrt(2) is not an integer, so reject. If you were interested in all real solutions though, much simpler to solve m^2 = 32 than 3^m = 33.
@peskyfervid651512 күн бұрын
Why was 500,000 written as 50,0000?
@minxythemerciless12 күн бұрын
2^19-32 = (2^20-64)/2 = (1048576-64)/2 = 1048512/2 = 524256. Knowing the 2 powers table up to 2^16 and then significant higher powers is assumed for any competent student, in the same way, knowing the 12 times table is assumed for any school student.
@torreyvent942912 күн бұрын
How about two to the fourteenth.
@hotironaircraftshop12 күн бұрын
16K=16,384
@elloco199612 күн бұрын
Nonsense question ... anyone with a decent knowledge of maths and IT knows 2"20 is 1048576, and then you simply compute off the top of your head (took me 2 seconds).
@jesan73312 күн бұрын
I feel it's much more straightforward to go with 2^19 = 1024*512 and calculate 512000+10240+2048-32.
@MaximJoly12 күн бұрын
32
@Rahulsurna-wd2uo13 күн бұрын
Ans:option B 4^13
@walterwen297513 күн бұрын
Harvard University Admission Interview, Simply: (2/3)²⸍³ =? (2/3)²⸍³ = (2²⸍³)/(3²⸍³) = [(2²⸍³)(3)]/[(3²⸍³)(3¹⸍³)] = {[(2²)(3)]¹⸍³}/3 = (³√12)/3 Answer check: (2/3)²⸍³ = 0.667²⸍³ = 0.763, (³√12)/3 = 2.289/3 = 0.763; Confirmed The calculation was achieved on a smartphone with a standard calculator app Final answer: (2/3)²⸍³ = 0.763 = (³√12)/3
@Niksssssszss13 күн бұрын
0
@vitalikwiskarik93713 күн бұрын
9
@MohandMahd14 күн бұрын
its 9 D is wrong.
@JoseIsary14 күн бұрын
18
@raulvivas378914 күн бұрын
D
@baxrom9014 күн бұрын
9
@afroseibrahim143314 күн бұрын
9
@ChiomaVivian-c1y14 күн бұрын
D
@REDDEATH67314 күн бұрын
D
@ronaldnoll324715 күн бұрын
With the fact that x>y and the assumption that x = y+1 or y=x-1 the task becomes solvable. Basically you can't do it like that. It doesn't work like that with a triangle with different lengths. Still... a nice task.
@ronaldnoll324715 күн бұрын
Brilliantly solved
@grahamnimmo465615 күн бұрын
Im confused.....to my mind there is not sufficient info to determine this. I say this because i could draw a similar triangle where one side is still 11 but the x and y sides are either increased or decreased in length, which will in turn change their actual value as well as change the area of the triangle! Is this fancy maths not just finding only one possible value of x and y. If so, i could do that by guessing a value for one of the variables and using pythagerous to calculate the other sides and the area! WTF????? Can someone please explain why i am wrong?
@ronaldnoll324715 күн бұрын
With the fact that x>y and the assumption that x = y+1 or y=x-1 the task becomes solvable. Basically you can't do it like that. It doesn't work like that with a triangle with different lengths. Still... a nice task.
@mikep314216 күн бұрын
Muffled and inconsistent sound
@murdock553716 күн бұрын
99% failed? Really? Come on, this is simple math, nothing special. m1 = 3; m2, m3 = -2(1 ± i√2)
@PR-fk5yb17 күн бұрын
At 1:12 the answer is on the board. No need to go further. EDIT: You are right. I am part of 100% that did not apply. I will de better next time! 😂