100613 The second law of thermodynamics may be false conventional wisdom. Let's face the wonder of full heat use. The second law of thermodynamics was imposed on us during victorian england's scientific and religious fascination with steam engines. The second law is behind modern refrigerators needing electrical energy to compress the refrigerent to force it to release as waste the heat that it has removed from the refrigerator's service interior in the cooling part of the refrigerent's circulation. The interior coldness draws in exterior heat through the cabinet insulation. There is also discarded heat from mechanical friction and electrical resistance. The net thermal output equals the electrical input with energy not being gained or lost in this refrigeration system including its forced waste. Unencumbered refrigeration by the principle that energy is conserved should produce electricity instead of consuming it. It makes more sense that refrigerators should yield electricity because energy is widely known to change form with no ultimate path of energy gain or loss being found. Therefore any form of fully recyclable energy can be cycled endlessly in any quantity. In an extreme case senario, full heat recycling, all electric, very isolated underground, undersea, or space communities would be highly survivable with self sufficient EMP resistant LED light banks, automated vertical farms, thaw resistant frozen food storehouses, factories, dwellings, self contained elevators, safe rooms, and horizontal transports. In a flourishing civillization senario, small self sufficient electric or cooling devices of many kinds and styles like lamps, smartphones, hotplates, water heaters, cooler chests, fans, radios, TVs, cameras, security devices, robot test equipment, scales, transaction terminals, wall clocks, open or ciosed for business luminous signs, power hand tools, ditch diggers, pumps, and personal transports, would be available for immediate use incrementally anywhere as people as individuals or larger social groups see fit. Some equipment groups could be consolidated on local networks. If a high majority thinks our civilization should geoengineer gigatons or teratons of carbon dioxide out of our environment, instalations using devices that convert ambient heat into electricity can hypothetically be scaled up do it with a choice of comsequences including many beneficial ones. Energy sensible refrigerators that absorb heat and yield electricity would complement computers as computing consumes electricity and yields heat. Computing would be free. Chips could have energy recycling built in. A simple rectifier crystal can, iust short of a replicatable long term demonstration of a powerful prototype, almost certainly filter the random thermal motioren of electrons or discrete positiive charged voids called holes so the electric current flowing in one direction predominates. At low system voltage a filtrate of one polarity predominates only a little but there is always usable electrical power derived from the source, which is Johnson (observation) Nyquest (theory) thermal electrical noise. This net electrical filtrate can be aggregated in a group of separate diodes in consistent alignment parallel creating widely scalable electrical power. The maximum energy is converted from ambient heat to productive electricity when the electrical load is matched to the array impeadence. Matched impeadence output (watts) is k (Boltźman's constant), one point three eight x 10^ minus 23, times T (temperature Kelvin) times bandwidth (0 Hz to a natural limit ~2 THz @ 290 K) times rectification halving and nanowatt power level rectification efficiency, times the number of diodes in the array. For reference, there are a billion cells of 1000 square nanometer area each per square millimeter, 100 billion per square centimeter. Order is imposed on the random thermal motion of electrons by the structual orderlyness of a diode array made of diodes made within a slab: -----‐------‐----_____-- Out 🔻🔻🔻🔻 ■■■■■■___ + Out All the P type semiconductor anodes abut a metal conductive plane deposited on the top face of the slab with nonrectifying joins; the N type semiconductor cathodes or common cathode abuts the bottom face. As the polarity filtered electrical energy is exported, the amount of thermal energy in the group of diodes decreases. This group cooling will draw heat in from the surrounding ambient heat at a rate depending on the filtering rate and thermal resistance between the group and ambient gas, liquid, or solid warmer than absolute zero. There is always a lot of ambient heat on our planet, more on equatorial dry desert summer days and less on polar desert winter nights. Focusing on the composition of one simple diode, a near flawless crystal of silicon is modified by implanting a small amount of phosphorus (N type conductivity) on one side from a ohmic contact end to a junction where the additive is suddenly and completely changed to boron (P type conductivity) with minimal disturbance of the crystal lattice. The crystal then continues to another ohmic contact. A region of high electrical resistance forms at the junction in this type of diode when the phosphorous near the ĵunction donates electrons that are free to move elsewhere while leaving phosphorus ions held in the crystal while the boron donates holes which are similalarly free to move. The two types of mobile charges mutually clear each other away near the junction leaving little electrical conductivity. An equlibrium width of this region is settled between the phosphorus, boron, electrons, and holes. Thermal noise is beyond steady state equlibrium. Thermal noise transients, where mobile electrons move from the phosphorus added side to the boron added side ride transient extra conductivity so the forward moving electrons are preferentally filtered into the external circuit. Mobile electrons are units of electric current. They lose their thermal energy of motion and gain electromotive force, another name for voltage, as they transition between the junction and the array electrical tap. Inside the diode, heat is absorbed: outside the diode, to exactly the same extent, an attached electrical circuit is energized. The voltage of a diode array is likely to be small so many similar arrays need to be put in series to build higher voltage. Understanding diodes is one way to become convinced that Johnson Nyquest thermal electrical noise can be rectified and aggregated. Self assembling development teams may find many ways to accomplish this wide mission. Taxonomically there should be many ways ways to convert heat directly into electricity. A practical device may use an array of Au needles in a SiO2 matrix abutting N type GaAs. These were made in the 1970s when registration technology was poor so it was easier to fabricate arrays and select one diode than just make one diode. There are other plausible breeches of the second law of thermodynamics. Hopefully a lot of people, mostly as independent teams, will join in expanding the breech. Please share the successes or setbacks of experiemental efforts. These devices would probably become segmented commodities sold with minimal margin over supply cost. They would be manufactured by advanced automation that does not need financial incentive. Applicable best practices would be adopted. Business details would be open public knowledge. Associated people should move as negotiated and freely and honestly talk. Commerce would be a planetary scale unified conglomerate of diverse local cooperatives. There is no need of wealth extracting top commanders. We do not need often token philanthropy from the top if the wide majority of people can afford to be generous. Aloha Charles M Brown Kilauea Kauai Hawaii 96754