Project 1 Overview and Hints
20:01
2 жыл бұрын
Transfer Learning with Keras
21:20
3 жыл бұрын
Regularization and Overfitting
10:42
3 жыл бұрын
Activation Functions
15:32
3 жыл бұрын
CCNs kernels maxpooling
19:08
3 жыл бұрын
Dropout Regularization
7:31
3 жыл бұрын
BMEN 207 Honors Intro
9:17
4 жыл бұрын
Simple Model for Infection Rates
12:27
How to Create a SubVI in LabVIEW
7:37
LabVIEW Intro
11:00
4 жыл бұрын
Пікірлер
@bArda26
@bArda26 2 ай бұрын
thanks! is it possible to make another video about find_peaks_cwt?
@MikeM-py2hq
@MikeM-py2hq 9 ай бұрын
I have exactly the same setup, but I don't have the "Figure options" button. Do you know how to enable it?
@Nilay-q2j
@Nilay-q2j 11 ай бұрын
How can someone be so awesome...
@radosawrutkowski5428
@radosawrutkowski5428 11 ай бұрын
I set up everything properly. In PyCharm all works perfectly. In mobile phone App too... But! - my training data in mobile App and data in python are not the same. I'll wait one day. Maybe they have one update in a day or sth
@KanishkKumar-m8t
@KanishkKumar-m8t Жыл бұрын
Nice video sir, Started python after 2-3 weeks and was having some doubts using this API , your video helped greatly
@MadhuWall
@MadhuWall Жыл бұрын
There is a mistake at 2:58. The error in the model for training should actually be less than the test set because it overfits to the training set and minimizes the error in the test set.
@arhammulla1639
@arhammulla1639 Жыл бұрын
I didn't understand your language but you served the purpose Thanks a lot
@tshepomobiyane7693
@tshepomobiyane7693 Жыл бұрын
great video
@daudabdulrehman1598
@daudabdulrehman1598 Жыл бұрын
Can you provide the code in comments
@brucebergkamp
@brucebergkamp Жыл бұрын
i got this error when trying to open the csv file UnicodeDecodeError: 'utf-8' codec can't decode byte 0xae in position 265: invalid start byte
@karimbechiri7595
@karimbechiri7595 Жыл бұрын
you helped me thank you.
@JeffersonCanedo
@JeffersonCanedo 2 жыл бұрын
Come on finish it of DB
@xnick_uy
@xnick_uy 2 жыл бұрын
If you have an up-to-date pandas installation you can just do a.plot(y='Close') without the need to explicitly create b or import matplotlib.
@devotion_surya3741
@devotion_surya3741 3 жыл бұрын
Awesome, nice explanation
@iam-zy6xg
@iam-zy6xg 3 жыл бұрын
do you know. you helped me thank you.
@saitarun6562
@saitarun6562 3 жыл бұрын
how to apply it for the column give me the code
@rishabhsingh3315
@rishabhsingh3315 3 жыл бұрын
My data set is consisting of 20,000 articles but I want to train only the first 100 do u know the command??
@nkululekorichard5676
@nkululekorichard5676 2 жыл бұрын
df.head(100)
@mohdirfandarood199
@mohdirfandarood199 3 жыл бұрын
hello there, i am gettin this error ("message": "request requires x-app-id and x-app-key headers") i gave all the headers correctly though.
@russnagel1
@russnagel1 3 жыл бұрын
Great video, I learned a lot. "Thank you for making it.
@AJ-et3vf
@AJ-et3vf 3 жыл бұрын
Awesome!! That's what exactly I needed to know how to make interactive plots in Python
@VistaTigerEye
@VistaTigerEye 3 жыл бұрын
Thank you I need that QT!
@Ruhgtfo
@Ruhgtfo 3 жыл бұрын
Great Xplanations anchor here~
@Ruhgtfo
@Ruhgtfo 3 жыл бұрын
Whoal ny git link ?
@hoaxuan7074
@hoaxuan7074 3 жыл бұрын
There are alternatives to back propagation. The simple evolution algorithm Continuous Gray Code Optimization works very well. You can find the paper online. The mutation operator is random plus or minus a.exp(-p.rnd()). If the neural network weight is constrained between -1 and 1 then a=2 to match the interval. rnd() returns a uniform random between 0 and 1. p is the so called precision and is a problem dependent positive number. It is easy to distribute training over many compute devices. Each device gets the full neural model and part of the training data (which can be local and private.) Each device is sent the same short sparse list of mutations and returns the cost for its part of the training data. The costs are summed and if an improvement an accept message is sent to each device else a reject message. Not much data is moving around per second. The devices could be anywhere on the internet, all around the place. Of course with evolution the faster the neural net the better. Fast Transform fixed filter bank neural nets are a good choice. There is some blog about them
@hoaxuan7074
@hoaxuan7074 3 жыл бұрын
Discrete convolutions, weighted sums and fast transforms like FFT are dot products. Max pooling is switching. ReLU is a switch🤔 f(x)=x is connect, f(x)=0 is disconnect. A light switch in your house is binary on off yet connects or disconnects a continuously variable AC voltage signal. The dot product of a number of dot products is still a dot product. When all the switch states become known in a ReLU net the net collapses to a simple matrix. There is a linear mapping from the input vector to the output vector. There are a lot of metrics you can apply and further math that can be done.
@only4school74
@only4school74 4 жыл бұрын
my left ear really enjoyed this
@hashemk3757
@hashemk3757 4 жыл бұрын
Really helpful thank you