Пікірлер
@mavmat5106
@mavmat5106 3 күн бұрын
Danke für das Tutorial. War sehr informativ :)
@Srinivasa-no-eqn-without-god
@Srinivasa-no-eqn-without-god 16 күн бұрын
THANKS SIR
@CFD-Bielefeld
@CFD-Bielefeld 22 күн бұрын
Due to numerous requests, I will give a series of technical tips on calculating the vortex volume fraction in this comment section.
@CFD-Bielefeld
@CFD-Bielefeld 22 күн бұрын
First things first: We start the time-dependent simulation at time t = 0 with an initial state, where the velocity field is equal to zero in the whole fluid domain. Even the velocity of the lid is equal to zero. Therefore, the Reynolds-Number Re and the kinetic energy are initially zero.
@CFD-Bielefeld
@CFD-Bielefeld 22 күн бұрын
The Reynolds Number is defined as follows: Re = u*h*rho/eta. Therein u is the lid-velocity, h is the height of the cavity, rho is the density and eta is the dynamic viscosity of the fluid. Since the lid-velocity is a function of time, the Reynolds Number is a function of time too. For t in [0,1], the lid velocity is acceleratated from u = 0 to u=100. For t > 1, u is constantly equal to 100 and as a result Re is constantly equal to 10.000= 1e+05.
@CFD-Bielefeld
@CFD-Bielefeld 16 күн бұрын
How to calculate the Volume Vortex Fraction: First, the velocity gradient L := nabla v, which is a rank 2 tensorfield, is calculated in each node of the grid. The cartesian coordinates of L are: L_ij := d_i v_j ( i = 1,2,3 ; j = 1,2,3 ) where d_i is the partial derivative operator in the i-direction and v_j is the j-coordinate of the velocity vector. In the next step we decompose the tensor L into a symmetric part S and an antisymmetric part W: S := 1/2 ( L + L^T ) and W := 1/2 ( L - L^T ) S_ij := 1/2 ( L_ij + L_ji ) and W_ij := 1/2 ( L_ij - L_ji ) In the next step we calculate the quantity Q in each node as follows: Q := 1/2 ( ||W||^2 - ||S||^2 ) where ||.|| is the Frobeniusnorm. To calculate ||S||^2, you simply have to square all elements of S and add them up. Proof that: ||W||^2 = 1/2 | curl v |^2 Next, we normalize the scalar field Q: Qn := 1 if Q > 0 Qn := 0 if Q <= 0 In the last step we integrate the function Qn over the flow domain G: VVF(t) := int_G Qn(x,y,z,t) dV Proof that VVF is the percentage of the Fluid Volume, where Q > 0 holds.
@CFD-Bielefeld
@CFD-Bielefeld 22 күн бұрын
Due to numerous requests, I will give a series of technical tips on calculating the vortex volume fraction in this comment section.
@CFD-Bielefeld
@CFD-Bielefeld 22 күн бұрын
First things first: We start the time-dependent simulation at time t = 0 with an initial state, where the velocity field is equal to zero in the whole fluid domain. Even the velocity of the 4 sidewalls is equal to zero. Therefore, the Reynolds-Number Re and the kinetic energy are initially zero.
@CFD-Bielefeld
@CFD-Bielefeld 22 күн бұрын
The Reynolds Number is defined as follows: Re = u*h*rho/eta. Therein u is the lid-velocity, h is the height of the cavity, rho is the density and eta is the dynamic viscosity of the fluid. Since the lid-velocity is a function of time, the Reynolds Number is a function of time too. All sidewalls have the same velocity magnitude. For t in [0,1], the lid velocity is acceleratated from u = 0 to u = 1. For t > 1, u is constantly equal to 1 and as a result Re is constantly equal to 100.
@CFD-Bielefeld
@CFD-Bielefeld 16 күн бұрын
How to calculate the Volume Vortex Fraction: First, the velocity gradient L := nabla v, which is a rank 2 tensorfield, is calculated in each node of the grid. The cartesian coordinates of L are: L_ij := d_i v_j ( i = 1,2,3 ; j = 1,2,3 ) where d_i is the partial derivative operator in the i-direction and v_j is the j-coordinate of the velocity vector. In the next step we decompose the tensor L into a symmetric part S and an antisymmetric part W: S := 1/2 ( L + L^T ) and W := 1/2 ( L + L^T ) S_ij := 1/2 ( L_ij + L_ji ) and W_ij := 1/2 ( L_ij - L_ji ) In the next step we calculate the quantity Q in each node as follows: Q := 1/2 ( ||W||^2 - ||S||^2 ) where ||.|| is the Frobebniusnorm. To calculate ||S||^2, you simply have to square all elements of S and add them up. Proof that: ||W||^2 = 1/2 | curl v |^2 Next, we normalize the scalar field Q: Qn := 1 if Q > 0 Qn := 0 if Q <= 0 In the last step we integrate the function Qn over the flow domain G: VVF(t) := int_G Qn(x,y,z,t) dV Proof that VVF is the percentage of the Fluid Volume, where Q > 0 holds.
@atlas4733
@atlas4733 Ай бұрын
What does it do? Separate the yellow and blue particles?
@CFD-Bielefeld
@CFD-Bielefeld Ай бұрын
The separator separates an oil-air mixture from a screw compressor, with finely distributed oil droplets, into the two phases oil and air.
@Srinivasa-no-eqn-without-god
@Srinivasa-no-eqn-without-god Ай бұрын
Excellent sir for your valuable contribution, sir what is the purpose of vortex volume fraction, can we find for laminar flow say Re<1000? Can we get difference for each Re, what can be significance in change in value of vortex volume fraction for various Re in steady state solutions of LDC only ( that at final time values)
@CFD-Bielefeld
@CFD-Bielefeld Ай бұрын
The vortex volume fraction VVF is a dimensionless global parameter and a measure of how strongly the flow is dominated by vortices. The VVF can be calculated for laminar as well as for turbulent flows. In the case of a rigidly rotating fluid with constant angular velocity, which is a purely laminar flow, the VVF will be equal to 1 and this means that the vortex covers the entire flow area. In contrast, in a pure shear flow VVF is equal to 0. In the Lid-Driven Cavity, the VVF depends on the Reynoldsnumber. Numerical experiments for 1000 < Re < 10000 show, that VVF increases with Re, what is intuitively expected. For my definition of VVF, see the video "Lid-Driven Cavity: Vortex Volume Fraction", September 08, 2024. Thank you for watching.
@Srinivasa-no-eqn-without-god
@Srinivasa-no-eqn-without-god 29 күн бұрын
But sir what is Re and why with less time it is steady state
@ulrichmeukiedje4175
@ulrichmeukiedje4175 2 ай бұрын
nice
@Azmi_Success_Point
@Azmi_Success_Point 2 ай бұрын
Nice 👍
@felixreith9692
@felixreith9692 3 ай бұрын
Danke für diese punktierte Einleitung, ich studiere Umweltingenieurwesen mit Schwerpunkt auf Wassertechnik und möchte CFD lernen.
@HegedusAndras-hh9lj
@HegedusAndras-hh9lj 6 ай бұрын
Hi! What Turbulence model did you use?
@CFD-Bielefeld
@CFD-Bielefeld 6 ай бұрын
In this project, we have used the k-omega SST model.
@MotordyneEngineering
@MotordyneEngineering 7 ай бұрын
Beautiful sims Martin. Wow, Its nice to see a full transition through mach. In future videos could you perhaps show velocity in units of Mach number? Mach number speaks volumes.
@mbb9
@mbb9 7 ай бұрын
Thank you for sharing, please which software are you using?
@CFD-Bielefeld
@CFD-Bielefeld 7 ай бұрын
For this LES-Simulation: Simcenter STAR-CCM+ plm.sw.siemens.com/de-DE/simcenter/fluids-thermal-simulation/star-ccm/
@mirelbucur7626
@mirelbucur7626 8 ай бұрын
Interesting. Could you please share some details regarding the grid size, type of elements used and the total cell number? I 'm working on something similar and I would appreciate to have some references. Thanks
@CFD-Bielefeld
@CFD-Bielefeld 8 ай бұрын
This VOF simulation requires an extremely fine grid and a relatively small time step in order to resolve the flow in detail without adaptive methods. In this case, an unstructured two-dimensional grid with almost 400000 cells (polygonal and prism-layer cells) was used. The average size of the cells in the core was 0.16 % of the characteristic length (diameter of the flow domain). Ten prism layers with a total thickness of 0.08 % in relation to the characteristic length were used on the wall. The size of the time step was 0.2ms. The VOF model was used without the optional sharpening factor. I hope this is helpful.
@mirelbucur7626
@mirelbucur7626 8 ай бұрын
Thanks a lot taking the time to answer my question. Is is ineed helpful look at the video and also to understand the grid resolution. I've done something similar in 2D with around 500k cells and VOF, in StarCCM+. For me was interesting to see that by using the tria mesh the results seemed more realistic than by using poly mesh. Thanks again and good luck with your projects.
@TerragonCFD
@TerragonCFD Жыл бұрын
Nice 👍
@musiklole4862
@musiklole4862 Жыл бұрын
Guten Abend Herr Petry, rechts ist RANS oder?
@CFD-Bielefeld
@CFD-Bielefeld Жыл бұрын
Korrekt! Oben links LES, unten rechts RANS.
@titusbreyer
@titusbreyer Жыл бұрын
Tolles Video 👍
@alexsafari2933
@alexsafari2933 Жыл бұрын
Grüße, Vielen Dank für das hilfreiche Video Es könnte eine große Hilfe und möglicherweise neues Potenzial sein Benutzer nur dann, wenn die englische Version angezeigt werden kann sowie !@@! Prost,
@TerragonCFD
@TerragonCFD Жыл бұрын
Interessante Art der Simulation 🙂
@Nasir_rosen
@Nasir_rosen Жыл бұрын
I wanted to express my sincere appreciation and gratitude for creating this video, as it has been incredibly helpful to me. However, in the video(at 22:14), you mentioned creating two additional parts under Geometry >Parts > Block and Cylinder." I can't understand why you created these two additional parts and how they impact the simulation outcomes. Could you please clarify this aspect for me? Thanks in advance.
@cedricgrotzner1684
@cedricgrotzner1684 Жыл бұрын
Those two parts are mainly created to describe specific areas inside the cyclone separator. By using volumetric controls under ( automated mesh -> custom controls -> volumetric control) the user can specify different mesh settings for different areas. In the tutorial this is used to create a very dense mesh inside the cyclone separator to resolve the swirling motion properly.
@Nasir_rosen
@Nasir_rosen Жыл бұрын
@@cedricgrotzner1684 Thanks for your lucid explanation :) Now it makes sense .
@komabu
@komabu Жыл бұрын
Kann die instationäre Strömung auch zur stationären Strömung werden, falls sich stehende Wellen bilden sollten?
@CFD-Bielefeld
@CFD-Bielefeld Жыл бұрын
Eine stehende Welle als Überlagerung einer links- und einer rechtslaufenden Welle setzt voraus, dass beide Laufrichtungen gleichberechtigt sind. Bei der ebenen Poiseuille-Strömung ist diese links-rechts Symmetrie nicht gegeben, da es im gewählten Bezugssystem, in dem die festen Ränder ruhen, eine mittlere Strömung von links nach rechts gibt. Für das von uns gewählte Modell wäre die Antwort also: Nein.
@CFD-Bielefeld
@CFD-Bielefeld Жыл бұрын
Die ebene Poiseuille-Strömung (Grundzustand) ist für Reynoldszahlen Re < 49.6 monoton stabil (Energiebetrachtung) und für Re > 5772 linear instabil. Der Übergang zur Turbulenz kann ab Re = 1000 erfolgen (Drazin & Reid, 1981).
@keyvanhp5841
@keyvanhp5841 Жыл бұрын
Great video.please post a tutorial video abou a soccer ball drag coefficient . Thanks.
@nieljoubert9835
@nieljoubert9835 Жыл бұрын
Good day Martin, I'm doing a research paper on an external gear pump and I'm applying the same models as for the lobe blower as it is essentially the same as an external gear pump but instead of air I just changed it to incompressible liquid (oil). I've spend quiet some time in the star ccm+ tutorial files trying to find out why we use the k-epsilon turbulent model and not the k-omega model, from what I can read I assume it is because the k-omega is sensitive to the value of omega in the free stream? But this issue was addressed by the SST K-omega model, so I'm a bit clueless on why we utilize the K-epsilon model then, any advice or pointers that would help me understand why we use that model would kindly be appreciated. kind regards Niel Joubert
@nieljoubert9835
@nieljoubert9835 Жыл бұрын
The only other explaination is that K-Epsilon models offer a reasonable balance between accuracy, computational expense, and resilience
@CFD-Bielefeld
@CFD-Bielefeld Жыл бұрын
The settings in tutorials are typically due to educational reasons or due to simplicity. Of course one can use these settings as a starting point, but for better results one has to adjust the cfd-model. For a gear pump I recommend the k-omega-SST turbulence model, which combines the advantages of the k-epsilon and the k-omega model.
@nieljoubert9835
@nieljoubert9835 Жыл бұрын
Thank you for your comment, I’ll compare the results to one another, maybe the difference is so small that one can use either models
@keyvanhp5841
@keyvanhp5841 Жыл бұрын
good video . please post a tutorial video about golf ball simulation .
@CFD-Bielefeld
@CFD-Bielefeld Жыл бұрын
Thank you. In the meantime, try this YT-Video: ANSYS FLUENT TRAINING: Golf ball Aerodynamics, CFD Simulation by ANSYS Fluent (kzbin.info/www/bejne/kIvOZGWthpxgfac)
@keyvanhp5841
@keyvanhp5841 Жыл бұрын
Good tutorial . Please post a tutorial video of a soccer ball drag simuation.Thanks
@oliverstoll6623
@oliverstoll6623 Жыл бұрын
Vielen Dank für das hilfreiche Video. Nachdem mein Studium schon etwas länger her ist, konnte ich meine Kenntnisse zur CFD-Simulation durch dein Video wieder schnell auffrischen :)
@Gnarkson
@Gnarkson Жыл бұрын
Moin, ist das Maxima oder Matlab? Edit: Nevermind, es ist Maple, dennoch danke! MfG
@fischgras8334
@fischgras8334 Жыл бұрын
Hast mich hier grad Nachts um eins erhellt. Für Menschen wie mich, die zu blöd/faul sind, um Programmiersprachen zu erlernen ist GPT ja ein Türöffner.
@sraniaki
@sraniaki 2 жыл бұрын
Can you please show the setup in the STAR-CCM+ for running this simulation? Thanks
@CFD-Bielefeld
@CFD-Bielefeld Жыл бұрын
For Details, please see the STAR-CCM+ Documentation: "Porous Resistance: Orthotropic Media" Tutorial. This tutorial solves the same problem as the "Porous Resistance: Isotropic Media" Tutorial, except that the fluid in the porous region cannot flow in any direction other than the bulk flow (y-) direction. This type of orthotropic porosity is specified by assigning large values to the inertial and viscous resistance components in the cross-flow directions (x- and z- directions in this case). The values of the components in the y-direction are the same as in the "Porous Resistance: Isotropic Media" Tutorial. Space: Three-Dimensional Material: Gas Flow: Segregated Flow Equation of State: Constant Density Time: Steady Viscous Regime: Turbulent, Reynolds-Averaged Navier-Stokes Reynolds-Averaged Turbulence: K-Epsilon Turbulence K-Epsilon Turbulence Models: Standard K-Epsilon K-Epsilon High y+ Wall Treatment: High y+ Wall Treatment The Video shows a modification of the original STAR-CCM+ model.
@sraniaki
@sraniaki Жыл бұрын
@@CFD-Bielefeld thanks for your explanation, but I couldn't find the video on your channel, I would be grateful if you could tell me which one?
@CFD-Bielefeld
@CFD-Bielefeld Жыл бұрын
The current video only shows the result, the full tutorial has not been implemented as a video so far.
@lairdexe2219
@lairdexe2219 2 жыл бұрын
Nice!
@MrBehnam123451
@MrBehnam123451 2 жыл бұрын
Is it a tutorial? Can you please show the setup?
@CFD-Bielefeld
@CFD-Bielefeld 2 жыл бұрын
Yes, it's a tutorial. For Details please see the "Porous Resistance: Orthotropic Media"-Tutorial from the STAR-CCM+ Documentation: "This tutorial solves the same problem as the Porous Resistance: Isotropic Media, except that the fluid in the porous region cannot flow in any direction other than the bulk flow (y-) direction. This type of orthotropic porosity is specified by assigning large values to the inertial and viscous resistance components in the cross-flow directions (x- and z- directions in this case)."
@joellegge460
@joellegge460 2 жыл бұрын
Man kann die Wasseroberfläche am unteren Scheitelpunkt durch die Reflektion trotzdem gut sehen. Gut wäre noch eine mathematische Erklärung zu der eingezeichneten Parabel in selben Video. Und vielleicht dazu separat noch eine CFD VOF Simulation mit unterschiedlichen Modellen wie implizit und explizit etc.
@CFD-Bielefeld
@CFD-Bielefeld 2 жыл бұрын
Wir werden ein zweites Experiment (mit Video) dazu durchführen. Geplant ist die Verwendung von Lebensmittelfarbe, um die Parabel besser sehen zu können. Wir vergleichen ferner die Messung mit der Theorie.
@manuelffonseca
@manuelffonseca 3 жыл бұрын
Thanks for this video, very interesting, I wonder for this experimental experience and today I've found this video... Very interesting.