Hi! Can i ask what pdf document you are using? What book is it from? Would you be able to share it?
@johnmutuguta98849 ай бұрын
Not a book, am using my notes. The derivations are not from a book
@evansmogeni-z6k9 ай бұрын
🔥🔥🔥
@lio357710 ай бұрын
🎊
@gayatrisahoo8440 Жыл бұрын
Great explanation, thank you so much sir
@holyshit922 Жыл бұрын
I derved fomula in two ways both universal for orthogonal polynomials 1) from recurrence relarion 2) from ordinary differential equation Way presented on this video is maybe shorter but possible for Chebyshov polynomials only Ad 1) I derived recurrence relation the same way as presented on this video but i solved it in following way * I defined exponential generating function (ordinary generating function gives me trigonometric solution from which i started) * I solved ordinary differential equation with initial conditions via Laplace transform * I got exponential generating function E(x,t) = exp(xt)cos(sqrt(1-x^2)t) (Here wikipedia claims that this is hyperbolic cosine but x is in [-1;1] so trigonometric cosine is better because avoid imaginary argument) * I calculated nth derivative of exponential generating function via Leibniz product rule and evaluated it at t = 0 Here I went further and used binomial expansion and got double sum * In this double sum I reindex inner sum and then changed order of summation Ad 2) I started from T_{n}(x)=cos(narccos(x)) Let t = arccos(x) y(t) = cos(nt) y'(t) = -nsin(nt) y''(t) = -n^2cos(nt) y''(t) = -n^2y(t) y''(t)+n^2y(t)=0 Here I used change of independent variable t = arccos(x) and i got (1-x^2)y''(x) - xy'(x) + n^2y(x) = 0 Now i used power series solution to sove this equation I got recurrenece relation for sequence of coefficients I splitted this sequence into two subsequences (for even and odd terms) I expressed values of these subsequences in terms of product and then i combined them into one sequence If we have two sequences a_{m} and b_{m} and we want to merge them into one sequence c_{m} such that a_{m} are even terms of sequence c_{m} and b_{m} are odd term of c_{m} then sequence c_{m} can be expressed as c_{m}=(1+(-1)^m)/2*a_{m}+(1-(-1)^m)/2*b_{m} There are Chebyshov polynomials of the second kind but they can be expessed with first derivative of Chebyshov polynomials of the first kind Itcan be observed that leading coefficients of T_{n}(x) = 2^{n-1} it is actually not true for n=0
@paulnyagah181 Жыл бұрын
very informative session
@paulnyagah181 Жыл бұрын
Interesting
@holyshit922 Жыл бұрын
I index the coefficients of numerators so i have not problems with lack of the letters in alphabet
@IconKenya Жыл бұрын
Done! Thanks for Clear & precise explanation Mw.
@tsehayenegash8394 Жыл бұрын
I have 15 years temperature data. How can I determine the trend by using these temperature data?
@johnmutuguta9884 Жыл бұрын
For a large volume of data, a neural network will do a better fit. You can use the Neural Net Fitting tool in MATLAB
@easy-maths-content2 жыл бұрын
Good explanation sir, in third example while find y you take +ve sign in place of -ve sign
@eliudngigi18172 жыл бұрын
One of the best lecturers in existence.... best explained
@eliudngigi18172 жыл бұрын
Good explanation.. thanks
@eliudngigi18172 жыл бұрын
🙏🏾
@njogugrace15272 жыл бұрын
very educative.
@Reactjs9652 жыл бұрын
Informative 👍
@haronkithinji35562 жыл бұрын
Great work sir. I just love how elaborate you are.
@johnmutuguta9884 Жыл бұрын
Glad you enjoy it!
@johnmutuguta98842 жыл бұрын
Get the Video transcripts here: drive.google.com/file/d/1TdzBpYO3E0WhxXsk9s09ZGMsr5mHDX01/view?usp=sharing
@Reactjs9652 жыл бұрын
👏👏👏
@Reactjs9652 жыл бұрын
Good content.🙂
@Reactjs9652 жыл бұрын
The content is clear and informative.
@Reactjs9652 жыл бұрын
I really learnt a lot. Thank you Dr. Mutuguta
@ivyrosemumbi52292 жыл бұрын
This is great sir... thanks alot
@emmanuelkyalo22922 жыл бұрын
I remember this method
@brandoncortes96552 жыл бұрын
plus and minus symbol in matlab???
@johnmutuguta98842 жыл бұрын
The plus and minus can be typed from keyboard
@markosewe74752 жыл бұрын
Professor 💪💪
@markosewe74752 жыл бұрын
Proud to be in your class back in the days, God's speed
@bettybor30492 жыл бұрын
keep winning
@The_Gits_Tv2 жыл бұрын
Good content Dr. , I enjoyed your teaching methods.
@emmanuelkyalo22922 жыл бұрын
symbolic maths 👍
@evansmogeni-z6k2 жыл бұрын
I would love to learn this too. Thumbs up to my COD
@stevencaldwell57822 жыл бұрын
promosm
@travelianshiundu37292 жыл бұрын
👌
@hillaryjuma85962 жыл бұрын
It's phenomenal for you to impart me with a lot of knowledge , sir . Receive deluge of blessings from God.
@daktari3402 жыл бұрын
This is interesting. Simple and easily understood. nice work
@stephenondieki22002 жыл бұрын
nice work Dr.
@ericawanja17492 жыл бұрын
Reading my notes while listenig to you. This is an amazing explanation sir. God bless you