One question, is ground truth bounding box and anchor boxes used here interchangeably?
@pulkitverma15072 жыл бұрын
Very helpful thanks!
@seolakim56672 жыл бұрын
Thank you so much for this amazing video. Just one question : at 23:58 , why would you define the "t_0" inside the sigmoid? In the loss function of Yolo v3 they directly use p_0 so I would like to know why! Is this just to make sure that the p_0 is between 0 and 1? Does this t_0 appear somewhere in the model when we implement it? Thanks in advance to anyone who would reply :)
@Can-ue7de2 жыл бұрын
Amazing Explanation of Yolo v3. Thank you very much.
@sekharbabu84982 жыл бұрын
Good explanation. Thank you sir
@bharathnvadla2 жыл бұрын
Hi Thank you for the explanation ,I have one question, How is the Objectiveness score calculated during the inference ? There is no groundtruth to refer to, on what basis the objectiveness score is measured ?
@tellmebaby1833 жыл бұрын
this is deep and fantastic, i call for vodka shots
@sameershaik72503 жыл бұрын
Explained very well.... great
@Илья96-с7б3 жыл бұрын
Топчик просто. Сразу всё понятно стало. Стало хоть ясно, что за якоря такие
@ahhhwhysocute3 жыл бұрын
Amazing explanation !! Thank you
@mainulalam77673 жыл бұрын
Thank you for this super explanation. I have a question regarding the objectness score. As you explained mathematically : P0 = sigmoid ( to) = P(object) * IoU -> my question is how we obtain this "P(object)" - predicted probability ? Thanks in advance for your support ..
@bharath56663 жыл бұрын
yes,it is predicted probability by the network.
@jessmendoza14832 жыл бұрын
@@bharath5666 can i find how does the network predices P(object), but like mathematically or somewhere in the code?
@kyawnaingwin83003 жыл бұрын
Should the input image for detection be same size as training images used in model fitting? Or how big is an input image size ok?
@valentynsichkar3 жыл бұрын
Hello there, There is no need to resize images before training or testing after training. The framework (e.g. the one on GitHub framework for YOLO) will take care of resizing. Moreover, separate images, both for training and testing, can be also of different dimensions.
@kyawnaingwin83003 жыл бұрын
@@valentynsichkar thanks for reply. In my case my test image is 20,000 x 20,000 size (drone photo mosaic) and model cannot detect. Only when I split the input image as tiles of same size of training images, it work. According to you, I think I can make bigger tiles for detection but just want to know the limit of input size.
@erack13 жыл бұрын
New to machine learning and I'm wanting to create an object detection for video games. What are some good resources to start learning, I know the basics essentially of neural networks and their functions. I've bought your course and will be starting to learn that.
@muhammadjamil81713 жыл бұрын
Great content 😊 Thanks Sir !
@zubairsk16243 жыл бұрын
hello dear i hope you are okay i want to ask you few questions 1- can i apply some edit on yolo equation to get better detection 2- can you recommend me some videos that explain every thing about YOLOv4 3- how can i write these equations in python? i hope you answer me thank you
@jessmendoza14832 жыл бұрын
i've read some articles where they improve yolov3 by adding an equation, you should search some, maybe it could help you
@abdulwarissherzad99143 жыл бұрын
Nice, can we use it for YOLO object detector? If not or yes what is the reasons. Thank you ...
@valentynsichkar3 жыл бұрын
Hello there! The Confusion Matrix displays mis-Classifications among classes. Any detection algorithm, after locating object on the image, has classification phase. Therefore, Confusion Matrix also can be build at this particular stage. The other case can be when ensemble of NNs are applied, e.g., one for detection and another for final classification.
@abdulwarissherzad99143 жыл бұрын
@@valentynsichkar Thank you for your prompt reply, I have already watched your previous video about the explanation of YOLOv3, so YOLOv3 or YOLOv4 when we run the mAP command line, it just calculate the TP and FP condition not another condition like TN, and FN, but at all it doesn’t have TN. How to calculate the confusion table without these four conditions, which we don’t have in YOLO value for this four condition. But these four conditions are important to have them exactly for each class that you want to classify and adding the value to confusion matrix.
@valentynsichkar3 жыл бұрын
Yes, there are tools to help to calculate different metrics for YOLO, including Confusion Matrix. Have a look on GitHub by following keywords: "confusion matrix YOLO". Another one with more results: "YOLO metrics".
@abdulwarissherzad99143 жыл бұрын
@@valentynsichkar Thank you, the references were great, but I want to find out for "YOLOv4 custom object detector" a proper source code to count and print confusion matrix. Those references are for the coco dataset which is already trained by YOLOs authors. would you like to make a video for YOLO and SSD object detector about its mAP and Confusion matrix, because in recent years these two object detection algorithms have become popular.
@valentynsichkar3 жыл бұрын
Thank you for the suggestion. I'll think about creating separate video lecture on how to compute Confusion Matrix for YOLO.
@glowwell42923 жыл бұрын
Thanks a lot. Explained neatly. Please make videos on V4 and V5 too.
@mohssineserraji10983 жыл бұрын
Great presentation
@sachinbharadwajm21203 жыл бұрын
great explanation & presentation!!!
@syafiqbasri87893 жыл бұрын
thank you so much sir.Its very useful and great explanation!
@listenbyheart55523 жыл бұрын
really awesome explanation it was! thanks a lot
@apurbaroy84113 жыл бұрын
Is it possible to integrate the YOLO algorithm with arduino or raspberry pi using a webcam?
@SM--wb4vg3 жыл бұрын
Very well explained
@Alpha-hj2ss3 жыл бұрын
Great Video! Can you please come with more videos
@shannondoyle51433 жыл бұрын
Really great detailed explanation. I don't get exactly what the ground truth values are determined for grid cells close to the centre grid cell of an object. Would you be able to explain this ?
@sumitbali91943 жыл бұрын
I have seen lot of videos on CNN, mostly crap. But your video is a gem. Appreciate the effort you have put into making this video. Diagrams are a great help in understanding the architecture. Thanks again
@pascalschluchter2093 жыл бұрын
Hey, can someone explain to me, why the detection is happening in Layer 82, 94 and 106. Is there any mathmatical background or is it like a fix parameter of YOLOv3?
@m5a1stuart833 жыл бұрын
I was code in YoloV3 from Indian KZbinr, and now here I am learning the true nature of Yolo. It helps alot for this OCR Project where I can ignore the image that did not intended to be uploaded to Server.
@rlb52613 жыл бұрын
Thank. It is excellent!
@fatiah5413 жыл бұрын
Thanks 🌹🌹🌹🌹
@fatiah5413 жыл бұрын
🍀🍀🍀🍀🍀🇮🇶
@adithyanarayan99763 жыл бұрын
Spent multiple hours trying to read through various papers in order to understand some of the topics. Should've stumbled upon your channel and the video much earlier. Love the fact that everything is explained to the point. You've earned yourself a subscriber in me. Can't stress this enough, but please put out more videos like these, along the lines of Computer Vision. Well done mate and once again, THANK YOU SO MUCH!
@valentynsichkar3 жыл бұрын
Thank you for the feedback! Will do!
@Stilbrech3rin3 жыл бұрын
I can just follow the others. This video is very helpful. Did you publish a paper? I would like to cite you for my project.
@abdshomad3 жыл бұрын
~ Timeline for watching again later ~ 00:01 Intro 01:17 What is YOLO? 03:13 Architecture of YOLO v3 05:28 Input 07:27 Detections at 3 Scales 09:28 Detection Kernels 12:02 Grid Cells 14:23 Anchor Boxes 18:25 Predicted Bounding Boxes 21:41 Objectness Score Conclusion
@bakervhaigaming97463 жыл бұрын
I regret why I haven't found this gem earlier! I had to go through 5-6 papers and hours of reading to understand these topics but your video made it very clear and specific. Please make more quality content like this. Thanks a lot.
@valentynsichkar3 жыл бұрын
Thank you for the feedback! Will do!
@iProFIFA3 жыл бұрын
Legitmely the clearest video I could find on this topic, amazing! Thanks a lot and keep up the great work Valentyn! :-)
@valentynsichkar3 жыл бұрын
Thank you for the feedback! Will do!
@shubhanubanerjee20983 жыл бұрын
Can you please make a video on darknet53.conv.74 model ....
@azmyin3 жыл бұрын
This is one of the simplest and most articulated explanation of YOLOv3. Thank you very much for this video and please keep up the good work.
@valentynsichkar3 жыл бұрын
Thank you for the feedback! Will do!
@kondurusrikanth76204 жыл бұрын
nice explaination
@mitultandon52274 жыл бұрын
one of the best explanations of YOLO!
@fujiawang43264 жыл бұрын
very well explained
@aasishkc17994 жыл бұрын
Well explained 👍
@naufalramadhani91664 жыл бұрын
thank you for thorough explanation sir, much appreciated it, keep it this way it is great.. cheers sir
@hanglethithu28734 жыл бұрын
Great. Thank you, it helps me a lot!
@shubhanubanerjee20984 жыл бұрын
Thank you very helpful . Can you make a series on deep learning please ?
@valentynsichkar4 жыл бұрын
Thanks for the feedback! For sure, will do!
@travel75174 жыл бұрын
Nicely explained
@mmshafique84914 жыл бұрын
hats off sir. thank you very much for such a nice briefing.
@akhilraj20914 жыл бұрын
great video, thanks for this..
@hima-2204 жыл бұрын
This video really contains the details of yolov3! It helps me a lot! Thx!