Although your graph may fly off the handle, no need to jump off the deep end. With these steps, I hope your exponential limits become easier.
@Thenudes-oj5vo3 ай бұрын
Thank you, you have no idea how much this helped me!!!
@TutorMeSempai3 ай бұрын
I am definitely glad this helped :)
@TutorMeSempai3 ай бұрын
Don't forget what you already learned about limits. It will come in handy when handling trig limits as well.
@TutorMeSempai4 ай бұрын
Time to squeeze your sandwiches to help us find our limits. 🍔
@TutorMeSempai4 ай бұрын
With these properties, the future of your limit evaluations should be much brighter :)
@ValerienotVal4 ай бұрын
This guy is AMAZING!!!
@TutorMeSempai4 ай бұрын
Thank you!!!! 😊
@doilupi4 ай бұрын
Interesting! Dropped you a like :)
@TutorMeSempai4 ай бұрын
Thank you!!! 😁
@doilupi4 ай бұрын
@@TutorMeSempai no problem. Pleasure all ours! Have a lovely weekend and game on!
@chrisneed4 ай бұрын
To be fair, plugging in values near 0 to show lim_{x->0} sin(x)/x isn't as rigorous since things can change rapidly close to 0. Assuming we don't use calculus, we could try using the squeeze theorem instead to show that result.
@TutorMeSempai4 ай бұрын
True, I think this could be another video idea. I'll show them how find their limit this way as well. Thank you!
@TutorMeSempai4 ай бұрын
Since regular trig functions are mostly continuous, you should be able to take advantage of simply plugging in your x. But for the more complicated trig limits, I hope these shortcuts help out a bit.
@TutorMeSempai4 ай бұрын
With a quick shortcut, you can save loads of time finding these basic limits at infinity.
@TutorMeSempai5 ай бұрын
Shortcuts are always nice, but be sure to understand why they work too.
@TutorMeSempai5 ай бұрын
K.I.S.S. -> That is the name of the game. Simplify where you can to remove those removable discontinuities.
@TutorMeSempai5 ай бұрын
With three different possible outcomes, it is important that you remember that each one represents a different type of continuity status for your function at the point of interest.
@TutorMeSempai5 ай бұрын
By understanding the overall make up of your discontinuity, you do not even need to see the formula to tell if the function has a limit or not.
@TutorMeSempai5 ай бұрын
Limits are all about behavior... Not actual values... Do not be confused :)
@TutorMeSempai6 ай бұрын
With 3 different types of discontinuities, can you identify them all?
@TutorMeSempai6 ай бұрын
Does your infinite geometric series converge or diverge? Gotta start there before trying to use your formula to evaluate it.
@TutorMeSempai6 ай бұрын
Just like our arithmetic series, geometric series follow similar rules. Just make sure you start with the correct sequence type.
@TutorMeSempai6 ай бұрын
Sometimes simply having the formula is not enough. I hope this help you know how to use it.
@TutorMeSempai7 ай бұрын
Start with your sequence and add up all of its elements.. Just make sure it is an arithmetic sequence.
@TutorMeSempai7 ай бұрын
Take your two terms -> Fill in Magic Section -> Poof -> Get your explicit and recursive formula.. Simple right??? :)
@TutorMeSempai7 ай бұрын
Seems like the magic trick is simply "start with the explicit formula" when finding these formulas...
@TutorMeSempai7 ай бұрын
Get your mirror out but this will look a lot like what we did for arithmetic sequences.
@TutorMeSempai8 ай бұрын
With a simple plug and chug method, you should be able to find the terms of your geometric sequence with no problem.
@TutorMeSempai8 ай бұрын
Common ratio or common multiplier... Which one makes more sense to you?
@TutorMeSempai8 ай бұрын
Now it should be super easy to find your remainders.
@TutorMeSempai8 ай бұрын
If you are a fan of the old "Plug and Chug" philosophy, then you should be a fan of the Factor Theorem.
@_mark_38149 ай бұрын
I skipped ahead to the middle of the video and noticed a misconception regarding "complex number OR real number". Technically, all real numbers are considered complex numbers, so that statement may be misleading. However, I understand you likely meant complex numbers with imaginary parts versus those without.
@TutorMeSempai8 ай бұрын
Thanks for the notice. I am not sure if I addressed it in this video or my complex numbers video but I stated this very thing. Real numbers are just complex numbers with no imaginary parts while imaginary numbers are complex number with no real parts.
@TutorMeSempai9 ай бұрын
The two formulas do not have to be mutually exclusive. Let them give helping hands to each other.
@TutorMeSempai9 ай бұрын
With just a little bit of information, you can still create your explicit formula.
@TutorMeSempai9 ай бұрын
Whether you are trying to find your first term or your fiftieth term, be sure you are using the formula that best suits your needs.
@Fracasse-0x139 ай бұрын
Is this only for x²?
@TutorMeSempai9 ай бұрын
This will only work for quadratics but you can have a coefficient in front of the x²
@Sonaaaaaaahh9 ай бұрын
Ial from india
@TutorMeSempai9 ай бұрын
Nice!
@Sonaaaaaaahh9 ай бұрын
YourEnglish is good
@TutorMeSempai9 ай бұрын
Thank you :)
@Sonaaaaaaahh9 ай бұрын
Were u from
@TutorMeSempai9 ай бұрын
America
@Sonaaaaaaahh9 ай бұрын
Hi sir
@TutorMeSempai9 ай бұрын
Hello
@TutorMeSempai9 ай бұрын
If you are increasing by a fixed amount, that is a definite sign that you are working with an arithmetic sequence.
@TutorMeSempai10 ай бұрын
I hope this quick explanation reaches the one who needs it. As is true of all of math, never be afraid to ask why something is the way it is. Even if it may seem obvious to others.
@TutorMeSempai10 ай бұрын
Don't waste time finding your roots if all you care about is the nature of the roots you have. Use your discriminant.
@TutorMeSempai10 ай бұрын
Complex roots are now able to be found since we are now aware of both imaginary and complex numbers.
@TutorMeSempai10 ай бұрын
With complex conjugates, say goodbye to your imaginary numbers!
@TutorMeSempai11 ай бұрын
Distribute or FOIL... Either method should suffice :)
@TutorMeSempai11 ай бұрын
Group your like terms and add them. Don't forget to distribute your negative if you have to.
@TutorMeSempai11 ай бұрын
Although the name sounds a bit complicated, complex numbers do not have to be too complex :)
@Plut0-YT11 ай бұрын
😎
@TutorMeSempai11 ай бұрын
😎
@TutorMeSempai11 ай бұрын
Imagine a world where numbers aren't real 😁
@TutorMeSempai Жыл бұрын
To repeat or not to repeat... Is that what makes it rational??
@TutorMeSempai Жыл бұрын
There is more to be continuous than just connecting some dots.
@TutorMeSempai Жыл бұрын
The trick behind the magic is staying on the axis of interest.. Make your other variable = 0.
@TutorMeSempai Жыл бұрын
Changing one identity into another is a helpful skill. Saves on having to memorize a ton of different identities.