One can make life simpler by choosing b as the Feynman parameter. dI/db = 2b \int^{\infty}_{-\infty} dx i/(x^2+a^2)(x^2+b^2) = 2\pi /a 1/(b+a) by contour integration. Then I =( 2\pi/a )ln(b+a) + c. Setting b=0, we get J=\int^{\infty}_{-\infty} dx ln(x^2)/(x^2+a^2) = (2/pi /a )ln a . Thus, c = 0. So, I = ( 2\pi/a )ln(b+a).
@mini_eiger349315 күн бұрын
zesty
@mini_eiger349321 күн бұрын
can you explain eulers identity
@mini_eiger349321 күн бұрын
integrating for funsies?
@GingerMath21 күн бұрын
Always for funsies :) But that would be a great title - Fourier for Funsies... ok yeah that's going to be an upcoming video (and an excuse to do Fourier things (if there needs to be a reason in the first place :) ))
@mini_eiger349321 күн бұрын
ginger math biology takeover when?
@GingerMath21 күн бұрын
You tell me >:|
@mini_eiger349327 күн бұрын
this is so neat i love it when people do math neat
@teodagreat28 күн бұрын
I think I’m in the wrong classroom
@sebas3141528 күн бұрын
You ate and left no crumbs
@mini_eiger349328 күн бұрын
ginger what about cultural ecosystem services :(
@GingerMath28 күн бұрын
I'm sure there will be a Part 2 at some point :)
@mini_eiger349328 күн бұрын
deforestation bad :( tree good :)
@jakebroxterman64029 күн бұрын
love this man
@jw421529 күн бұрын
Imagine taking APES
@RanBlakePianoАй бұрын
I can barely hear you
@lincolnabena770Ай бұрын
hi! i'm so so confused, do you mind explaining the concept of squircles for a beginner in math to then explain deriving the volume formula. please😭
@maxvangulik1988Ай бұрын
ceil(x)-x=1-{x} 0<={x}<1, so the geometric series for 1/(1-{x}) converges. The problem, then, is finding the ceiling of the sum, because if {x} is something like .999 the ceiling will be much higher than when it's something smaller like .6
@mini_eiger3493Ай бұрын
ISABELLA GOT A LOLLIPOP!!!!!!
@GingerMathАй бұрын
YES SHE DID! I should include bloopers like that more often
@teodagreatАй бұрын
I understand every bit of this!
@GingerMathАй бұрын
AWESOME - wanna share it with some friends then? :D
@teodagreatАй бұрын
@@GingerMath Already did😂
@Jalina69Ай бұрын
I always thought those floors and ceilings were so hard.
@GingerMathАй бұрын
Ditto! But if you split them up like this they're (hopefully) manageable
@angusclark6170Ай бұрын
Nice video! Are you not forgetting a (-1)^m in the final solution due to the i^2m?
@GingerMathАй бұрын
Yes I am... whoops - thanks for pointing that out lol
@Mario_AltareАй бұрын
Hi 🙂Maybe at 16:41 you should add (-1)^m
@Mephisto707Ай бұрын
4:45 Missed a t multiplying the second log.
@mini_eiger34932 ай бұрын
wow the mic quality is so good
@worldnotworld2 ай бұрын
Looks interesting, but I can't figure out what steps you're skipping when you claim an bounds of zero and two for the integral wrt t.
@TungstenCarbideProjectile2 ай бұрын
specific heat of potato is about 3.4 kJ/kg
@SaintC0bain2 ай бұрын
Here’s to hoping you continue this series
@Jalina692 ай бұрын
Nice one
@carbazone6192 ай бұрын
Very interesting
@mini_eiger34932 ай бұрын
WOAH!!! 🤯🤯🤯🤯
@Anonymous-Indian..20032 ай бұрын
I've used f(z) = ln(z + ib) / (z² + a²) , b>0 And then contour integration by using upper side rectangular contour with residue at z = ia , and then equating real parts and we got it.
@holyshit9222 ай бұрын
Integration by parts twice and substitution x = tan(t) leads us to the integral -4\int_{0}^{\frac{\pi}{2}}\ln{(cos{(t)})}dt
@DihinAmarasigha-up5hf2 ай бұрын
I'm curious to know how we can the pole at z=i because it is of infinite order and the power series can't be used as well due to the 1/(z+i) being there...any ideas on how to calculate it...?
@carbazone6192 ай бұрын
The singularity at z=i is no longer a pole in this case, but an essential singularity because the Laurent series doesn’t terminate for some finite negative power.
I didn't use complex analysis but simple integration techniques and I got the result Integral(-½ to +½) Γ(1+x) Γ(1-x) dx = (4/π) β(2) = 4G/π Here β is dirichlet beta function.
@Anonymous-Indian..20033 ай бұрын
But ginger sir , your solution is also really cool.
@Jalina693 ай бұрын
Please dont say lohopitals)
@Jalina693 ай бұрын
Choise of contours always seems completely arbitrary to me ://
@thedefenestrator3 ай бұрын
bro forgot to edit out the first take
@GingerMath3 ай бұрын
Well that's embarrassing... but hey it's fixed now :D
@Jalina693 ай бұрын
L'Hopital)
@henrydaley96863 ай бұрын
Take the derivative of both sides to give y’ = y’’ + y’’’ + … Then plug into the original equation to get y = 2y’ Giving the solution y = Ae^ (x/2)
@GingerMath3 ай бұрын
@@henrydaley9686 I meannn you could… but Laplace transforms are fun…
@shivx32952 ай бұрын
@@GingerMathi mean why would we waste our time
@carlgauss1702Ай бұрын
Marvelous solution. Not the most original idea, but it never gets old.
@bahiihab-y2r3 ай бұрын
cool method before i watch the video i think that you will use the box contour but i suprise by using the semicircle contour really wonderful 🥰🥰
@bahiihab-y2r3 ай бұрын
really cool🥰🥰 i love this contour integration🤩 but sir can you explain why the second integral =- pi res(0) because i couldn't really understand. thank you !! and keep going! more contour integration😊
@GingerMath3 ай бұрын
Glad you liked it!! Whenever we have a pole completely inside a contour (going counterclockwise), we would have 2pi*i*Res, but since the pole at zero lies ON the contour, we integrate around it with a semicircle (taking the limit as its radius goes to zero). The result is that instead of 2pi*i*Res is -pi*i*Res, as it is only a semicircle (so pi radians) and we are going around it clockwise, hence the minus sign. I'll be sure to add a bit on this for the next complex analysis video!
@Samir-zb3xk3 ай бұрын
Another way you could do it: find a power series for ln(1-x^t)/x and then you pretty much all that's left in the integral is ln(x) ⋅ power function which is easily handled by integration by parts
@WonderfulDeath3 ай бұрын
try and get rid of the annoying background noise in future videos
@Potatos29802 ай бұрын
try keeping that to yourself in the future
@WonderfulDeath2 ай бұрын
@@Potatos2980 lol be quiet child
@Jalina693 ай бұрын
Really)
@GingerMath3 ай бұрын
Yes really 😁 - thoughts?
@Jalina693 ай бұрын
@@GingerMathmy wild guess is you never were taught cursive)
@GingerMath3 ай бұрын
@@Jalina69 Man what? 🤣 I know it, my handwriting is just awful