e-ATING Up a Sum
14:19
28 күн бұрын
Bestie Beta Bonding
17:54
Ай бұрын
The Beta-Zeta Combo
33:39
Ай бұрын
Glasser-ing a Great Integral
6:52
An Intro to Derivatives
17:27
2 ай бұрын
A Hyper(bolic) Combo!
17:24
3 ай бұрын
Sum Light Logs
6:53
3 ай бұрын
Testing Tricky Tangents!
23:04
3 ай бұрын
AP Scores Reaction!
6:45
3 ай бұрын
An Intro into Contour Integration
54:14
Evaluating an Eta Extravaganza
24:13
REALly Complex arctan Shenanigans
13:02
Exp(anding) a Derivative
15:20
4 ай бұрын
Пікірлер
@RashmiRay-c1y
@RashmiRay-c1y Күн бұрын
One can make life simpler by choosing b as the Feynman parameter. dI/db = 2b \int^{\infty}_{-\infty} dx i/(x^2+a^2)(x^2+b^2) = 2\pi /a 1/(b+a) by contour integration. Then I =( 2\pi/a )ln(b+a) + c. Setting b=0, we get J=\int^{\infty}_{-\infty} dx ln(x^2)/(x^2+a^2) = (2/pi /a )ln a . Thus, c = 0. So, I = ( 2\pi/a )ln(b+a).
@mini_eiger3493
@mini_eiger3493 15 күн бұрын
zesty
@mini_eiger3493
@mini_eiger3493 21 күн бұрын
can you explain eulers identity
@mini_eiger3493
@mini_eiger3493 21 күн бұрын
integrating for funsies?
@GingerMath
@GingerMath 21 күн бұрын
Always for funsies :) But that would be a great title - Fourier for Funsies... ok yeah that's going to be an upcoming video (and an excuse to do Fourier things (if there needs to be a reason in the first place :) ))
@mini_eiger3493
@mini_eiger3493 21 күн бұрын
ginger math biology takeover when?
@GingerMath
@GingerMath 21 күн бұрын
You tell me >:|
@mini_eiger3493
@mini_eiger3493 27 күн бұрын
this is so neat i love it when people do math neat
@teodagreat
@teodagreat 28 күн бұрын
I think I’m in the wrong classroom
@sebas31415
@sebas31415 28 күн бұрын
You ate and left no crumbs
@mini_eiger3493
@mini_eiger3493 28 күн бұрын
ginger what about cultural ecosystem services :(
@GingerMath
@GingerMath 28 күн бұрын
I'm sure there will be a Part 2 at some point :)
@mini_eiger3493
@mini_eiger3493 28 күн бұрын
deforestation bad :( tree good :)
@jakebroxterman640
@jakebroxterman640 29 күн бұрын
love this man
@jw4215
@jw4215 29 күн бұрын
Imagine taking APES
@RanBlakePiano
@RanBlakePiano Ай бұрын
I can barely hear you
@lincolnabena770
@lincolnabena770 Ай бұрын
hi! i'm so so confused, do you mind explaining the concept of squircles for a beginner in math to then explain deriving the volume formula. please😭
@maxvangulik1988
@maxvangulik1988 Ай бұрын
ceil(x)-x=1-{x} 0<={x}<1, so the geometric series for 1/(1-{x}) converges. The problem, then, is finding the ceiling of the sum, because if {x} is something like .999 the ceiling will be much higher than when it's something smaller like .6
@mini_eiger3493
@mini_eiger3493 Ай бұрын
ISABELLA GOT A LOLLIPOP!!!!!!
@GingerMath
@GingerMath Ай бұрын
YES SHE DID! I should include bloopers like that more often
@teodagreat
@teodagreat Ай бұрын
I understand every bit of this!
@GingerMath
@GingerMath Ай бұрын
AWESOME - wanna share it with some friends then? :D
@teodagreat
@teodagreat Ай бұрын
@@GingerMath Already did😂
@Jalina69
@Jalina69 Ай бұрын
I always thought those floors and ceilings were so hard.
@GingerMath
@GingerMath Ай бұрын
Ditto! But if you split them up like this they're (hopefully) manageable
@angusclark6170
@angusclark6170 Ай бұрын
Nice video! Are you not forgetting a (-1)^m in the final solution due to the i^2m?
@GingerMath
@GingerMath Ай бұрын
Yes I am... whoops - thanks for pointing that out lol
@Mario_Altare
@Mario_Altare Ай бұрын
Hi 🙂Maybe at 16:41 you should add (-1)^m
@Mephisto707
@Mephisto707 Ай бұрын
4:45 Missed a t multiplying the second log.
@mini_eiger3493
@mini_eiger3493 2 ай бұрын
wow the mic quality is so good
@worldnotworld
@worldnotworld 2 ай бұрын
Looks interesting, but I can't figure out what steps you're skipping when you claim an bounds of zero and two for the integral wrt t.
@TungstenCarbideProjectile
@TungstenCarbideProjectile 2 ай бұрын
specific heat of potato is about 3.4 kJ/kg
@SaintC0bain
@SaintC0bain 2 ай бұрын
Here’s to hoping you continue this series
@Jalina69
@Jalina69 2 ай бұрын
Nice one
@carbazone619
@carbazone619 2 ай бұрын
Very interesting
@mini_eiger3493
@mini_eiger3493 2 ай бұрын
WOAH!!! 🤯🤯🤯🤯
@Anonymous-Indian..2003
@Anonymous-Indian..2003 2 ай бұрын
I've used f(z) = ln(z + ib) / (z² + a²) , b>0 And then contour integration by using upper side rectangular contour with residue at z = ia , and then equating real parts and we got it.
@holyshit922
@holyshit922 2 ай бұрын
Integration by parts twice and substitution x = tan(t) leads us to the integral -4\int_{0}^{\frac{\pi}{2}}\ln{(cos{(t)})}dt
@DihinAmarasigha-up5hf
@DihinAmarasigha-up5hf 2 ай бұрын
I'm curious to know how we can the pole at z=i because it is of infinite order and the power series can't be used as well due to the 1/(z+i) being there...any ideas on how to calculate it...?
@carbazone619
@carbazone619 2 ай бұрын
The singularity at z=i is no longer a pole in this case, but an essential singularity because the Laurent series doesn’t terminate for some finite negative power.
@maxvangulik1988
@maxvangulik1988 3 ай бұрын
I=int[-♾️,♾️]((1+x^2)^-(n+1))dx x=tan(y) dx=sec^2(y)dy I=int[-pi/2,pi/2](sec^(-2n)(y))dy I=2•int[0,pi/2](sin^0(y)cos^2n(y))dy beta(u,v)=2•int[0,pi/2](sin^(2u-1)(y)cos^(2v-1)(y))dy I=beta(1/2,n+1/2) I=sqrt(pi)gamma(n+1/2)/gamma(n+1)
@maxvangulik1988
@maxvangulik1988 3 ай бұрын
y=x^t x=y^(1/t) dx=1/t•y^(1/t-1)•dy I=1/t^2•int[0,1](ln(y)ln(1-y)/y)dy u=ln(y) dv=ln(1-y)/y du=dy/y v=-Li_2(y) I=1/t^2•(-ln(y)Li_2(y)|[0,1]+int[0,1](Li_2(y)/y)dy) I=Li_3(1)/t^2 Li_3(1)=sum[k=1,♾️](1^k/k^3)=zeta(3) I=zeta(3)/t^2
@maxvangulik1988
@maxvangulik1988 3 ай бұрын
what about the arcs tho?
@Anonymous-Indian..2003
@Anonymous-Indian..2003 3 ай бұрын
I didn't use complex analysis but simple integration techniques and I got the result Integral(-½ to +½) Γ(1+x) Γ(1-x) dx = (4/π) β(2) = 4G/π Here β is dirichlet beta function.
@Anonymous-Indian..2003
@Anonymous-Indian..2003 3 ай бұрын
But ginger sir , your solution is also really cool.
@Jalina69
@Jalina69 3 ай бұрын
Please dont say lohopitals)
@Jalina69
@Jalina69 3 ай бұрын
Choise of contours always seems completely arbitrary to me ://
@thedefenestrator
@thedefenestrator 3 ай бұрын
bro forgot to edit out the first take
@GingerMath
@GingerMath 3 ай бұрын
Well that's embarrassing... but hey it's fixed now :D
@Jalina69
@Jalina69 3 ай бұрын
L'Hopital)
@henrydaley9686
@henrydaley9686 3 ай бұрын
Take the derivative of both sides to give y’ = y’’ + y’’’ + … Then plug into the original equation to get y = 2y’ Giving the solution y = Ae^ (x/2)
@GingerMath
@GingerMath 3 ай бұрын
@@henrydaley9686 I meannn you could… but Laplace transforms are fun…
@shivx3295
@shivx3295 2 ай бұрын
​@@GingerMathi mean why would we waste our time
@carlgauss1702
@carlgauss1702 Ай бұрын
Marvelous solution. Not the most original idea, but it never gets old.
@bahiihab-y2r
@bahiihab-y2r 3 ай бұрын
cool method before i watch the video i think that you will use the box contour but i suprise by using the semicircle contour really wonderful 🥰🥰
@bahiihab-y2r
@bahiihab-y2r 3 ай бұрын
really cool🥰🥰 i love this contour integration🤩 but sir can you explain why the second integral =- pi res(0) because i couldn't really understand. thank you !! and keep going! more contour integration😊
@GingerMath
@GingerMath 3 ай бұрын
Glad you liked it!! Whenever we have a pole completely inside a contour (going counterclockwise), we would have 2pi*i*Res, but since the pole at zero lies ON the contour, we integrate around it with a semicircle (taking the limit as its radius goes to zero). The result is that instead of 2pi*i*Res is -pi*i*Res, as it is only a semicircle (so pi radians) and we are going around it clockwise, hence the minus sign. I'll be sure to add a bit on this for the next complex analysis video!
@Samir-zb3xk
@Samir-zb3xk 3 ай бұрын
Another way you could do it: find a power series for ln(1-x^t)/x and then you pretty much all that's left in the integral is ln(x) ⋅ power function which is easily handled by integration by parts
@WonderfulDeath
@WonderfulDeath 3 ай бұрын
try and get rid of the annoying background noise in future videos
@Potatos2980
@Potatos2980 2 ай бұрын
try keeping that to yourself in the future
@WonderfulDeath
@WonderfulDeath 2 ай бұрын
@@Potatos2980 lol be quiet child
@Jalina69
@Jalina69 3 ай бұрын
Really)
@GingerMath
@GingerMath 3 ай бұрын
Yes really 😁 - thoughts?
@Jalina69
@Jalina69 3 ай бұрын
​@@GingerMathmy wild guess is you never were taught cursive)
@GingerMath
@GingerMath 3 ай бұрын
@@Jalina69 Man what? 🤣 I know it, my handwriting is just awful
@jw4215
@jw4215 3 ай бұрын
That other dude seems pretty cool
@乔峯
@乔峯 3 ай бұрын
Genius
@holyshit922
@holyshit922 2 ай бұрын
Solution too complicated
@jw4215
@jw4215 4 ай бұрын
Academic WEAPON