0.3.4 Uploading to Matlab Online
1:30
1.2.1 on edX
3:53
6 жыл бұрын
1 2 1HD
3:53
9 жыл бұрын
Last LAFF 2015
53:55
9 жыл бұрын
Last LAFF Overture (www.ulaff.net)
6:15
Sample Final Problem 6
9:42
9 жыл бұрын
Sample Exam 2 Question 9
2:46
9 жыл бұрын
Sample Exam 2 Question 2
4:41
9 жыл бұрын
Sample Exam 2 Question 1
4:21
9 жыл бұрын
HW 5 2 4 7
5:48
9 жыл бұрын
HW 5 3 2 1
3:59
9 жыл бұрын
HW 5 2 4 3
5:20
9 жыл бұрын
HW 5 2 4 6
4:42
9 жыл бұрын
4 4 4 Special Shapes 2015
7:52
9 жыл бұрын
Sample Exam 1, Question 7
9:45
9 жыл бұрын
Sample Exam 1, Question 5
3:03
9 жыл бұрын
Sample Exam 1, Question 3
10:06
9 жыл бұрын
Sample Exam 1, Question 4
1:42
9 жыл бұрын
Sample Exam 1, Question 2
5:01
9 жыл бұрын
Sample Exam 1, Question 6
4:03
9 жыл бұрын
3 1 1 Timmy Part 2 update
1:30
9 жыл бұрын
4.1.1 Part 4
6:40
9 жыл бұрын
4.1.1 Part 3
4:57
9 жыл бұрын
3.2.3.2 Matlab (2015)
4:28
9 жыл бұрын
3.2.2.2 Matlab (2015)
8:29
9 жыл бұрын
Пікірлер
@ellenlinlin
@ellenlinlin Ай бұрын
I think the conclusive statement should be the power method yields to a vector in the direction of the eigenvector associated with the largest (in magnitude) eigenvalue
@zainyact551
@zainyact551 2 ай бұрын
albert einstein
@natewilliams7005
@natewilliams7005 3 ай бұрын
Good video
@laulinky334
@laulinky334 6 ай бұрын
why 32K L1 cache can only store 3 40x40 matrix in
@dvir-ross
@dvir-ross 6 ай бұрын
Great explanation! Thank you!
@eddy9756
@eddy9756 8 ай бұрын
I am the only one in 2024
@meowmeowkami
@meowmeowkami 9 ай бұрын
yay math!
@Hans-JoachimMarseille-dg6vk
@Hans-JoachimMarseille-dg6vk 11 ай бұрын
Why the cost of Ab_j is 2mk? I reckon it is 2mk-m because it can be km multiplications to compute k vectors corresponding to k elements in b_j, while adding the vectors up would only take (k-1)*m steps
@Hans-JoachimMarseille-dg6vk
@Hans-JoachimMarseille-dg6vk 11 ай бұрын
Ok I c, it's just simplified as 2mk
@mrinalde
@mrinalde 11 ай бұрын
Typo @ 3:46 a2_perp = a2 - < big term> // slide shows as a1 - <big term>
@brod515
@brod515 Жыл бұрын
@11:59 how did the order suddenly change to column x row. how is that correct?
@OKJazzBro
@OKJazzBro Жыл бұрын
If anyone found it hard to understand why the rotations on the basis vectors can be used to construct the rotation on the original vector, it's because they proved using geometry in the first week's lecture that rotation is a linear transformation. So R(v) = R(mag_x * [1, 0] + mag_y * [0, 1]) = R(mag_x * [1, 0]) + R(mag_y * [0, 1]) = mag_x * R([1, 0]) + mag_y * R([0, 1]). Now, again using geometry they derive what R(basis vector) is for both basis vectors, which turns out to R([0, 1]) = [cos(theta), sin(theta)] and R([1, 0]) = [-sin(theta), cos(theta)]. Now if we put these back in the above formula, we'll get the full formula for the rotation of any 2D vector v.
@k0185123
@k0185123 Жыл бұрын
I am so grateful that you share this invaluable videos on KZbin, so that people like me can easily learn from it any time we need. This is extremely helpful! Thank you.
@k0185123
@k0185123 Жыл бұрын
wonderful explanation!!!!
@k0185123
@k0185123 Жыл бұрын
thank you!!!!!!
@sandah
@sandah Жыл бұрын
I still don't get it
@kkuo13
@kkuo13 Жыл бұрын
Basically at the 3:30 mark she split the equation into two: the part where all the E sub j's = 0, and the right side where the E sub i is guaranteed to be 1. Because of this we know that the left side will always equal zero, and the right side of the equation will always be one, therefore 0 + chi times 1 will equal chi
@krg8121
@krg8121 2 жыл бұрын
will it work for any dimension or only square?
@tianayounan6579
@tianayounan6579 2 жыл бұрын
Horrible video. Terrible explanation. Complete waste of 2 minutes
@farhanfouadacca
@farhanfouadacca 2 жыл бұрын
Much better than 7 pages of my crap text book. Good job!
@turuus5215
@turuus5215 2 жыл бұрын
Yeah, but still a mystery to me. I'm trying to write code in Java, but I have no basis. People say ヤコビ法、べき乗法、Gaussの消去法 works. I need to find a demonstration of them.
@rabbitcreative
@rabbitcreative 2 жыл бұрын
"We know that", "we know that", "we know that". Speak for yourself.
@flaguser4196
@flaguser4196 2 жыл бұрын
when your teacher asks you to invert a matrix
@flaguser4196
@flaguser4196 2 жыл бұрын
in practice however, one of them will be faster due to how matrices and vectors would be represented in memory and cpu cache misses.
@saraho5338
@saraho5338 2 жыл бұрын
Nice, thank you
@aymanelhasbi5030
@aymanelhasbi5030 2 жыл бұрын
Unfortunately i didn't know this , respect sir !!
@allrounder2367
@allrounder2367 3 жыл бұрын
Didn't got it
@KaranSingh-ku6vr
@KaranSingh-ku6vr 3 жыл бұрын
I was wondering why I am having such a hard time understanding this. This guy never even explained
@leminh3482
@leminh3482 3 жыл бұрын
Thank you so much! You saved my life.
@ladc8960
@ladc8960 3 жыл бұрын
Official Retiremento (Aug 31)@UT XLonghorns 🤘
@Cat_Sterling
@Cat_Sterling 3 жыл бұрын
Very helpful! Thank you!
@KA-yw7ex
@KA-yw7ex 3 жыл бұрын
You are not making any sense
@gentlemandude1
@gentlemandude1 3 жыл бұрын
Still not that clear. A more graphical representation of the operations would be much more helpful.
@sassonvaknin4068
@sassonvaknin4068 4 жыл бұрын
Thank you! The only video which help mr to understand that "set path" issue
@edgartorres9481
@edgartorres9481 4 жыл бұрын
Very nice!
@michaelatorn8380
@michaelatorn8380 4 жыл бұрын
Awsome video, it really helped me👍
@SB-rf2ye
@SB-rf2ye 4 жыл бұрын
I've never seen any explanation as easy to understand as this one. Kudos!
@Sai48577
@Sai48577 4 жыл бұрын
not explained properly
@PatatjesDora
@PatatjesDora 4 жыл бұрын
Nice
@Nik-dz1yc
@Nik-dz1yc 4 жыл бұрын
very simple
@rafaelsoto1099
@rafaelsoto1099 4 жыл бұрын
Excellent video, thanks a lot!!
@momosakura190
@momosakura190 4 жыл бұрын
Could we calculate the inverse of R? Is R a n by n matrix? Thank you
@LAFFutX
@LAFFutX 4 жыл бұрын
We avoid calculating inverses. They are costly in many ways. R is upper triangular and triangular solves are better. Often in the literature when people say "inverse", they really mean decompose and solve.
@iheartalgebra
@iheartalgebra 4 жыл бұрын
@@LAFFutX Suppose we stop at 2:22 and obtain the solution by computing x = R^-1 Q^T b (perhaps using the "thin" QR factorization so that we may assume R is square). Would this be numerically more stable than the naive approach of computing (X^T X)^-1 X^T b?
@advancedlaff6453
@advancedlaff6453 4 жыл бұрын
@@iheartalgebra thank you for your question. The devil is in the detail. Yes, if you use the QR factorization to solve the problem, this is numerically more stable IF you use the right method for computing the QR factorization (which means: not Gram-Schmidt). The problem with using the method of normal equations is that is square the condition number of the matrix (a measure of how much a small relative error in the right-hand side is amplified into a relative error in the solution0. For details, you may want to look at Weeks 1-4 of our graduate course (ulaff.net, fourth column).
@tazyohivesg-player8674
@tazyohivesg-player8674 4 жыл бұрын
premium content
@qqshendon5788
@qqshendon5788 4 жыл бұрын
so cool
@mschepps21
@mschepps21 4 жыл бұрын
Very well done
@cowcabobizle
@cowcabobizle 4 жыл бұрын
Woohoo! LAFF on KZbin!
@a.s.8113
@a.s.8113 4 жыл бұрын
nicely explained
@robertvandegeijn5320
@robertvandegeijn5320 4 жыл бұрын
Thank you. We now have a MOOC: LAFF-On Programming for High Performance, that teaches you how to do it yourself.
@wallysilva4478
@wallysilva4478 4 жыл бұрын
Notebooks of the ulaff in github.com/maurice60/LAFF
@wallysilva4478
@wallysilva4478 4 жыл бұрын
Excellent!
@lilahamel9526
@lilahamel9526 4 жыл бұрын
awesome!!! I believe that linear algebra is easier to explain with geometry, i was looking for this kind of explanation for so long, thank you.
@devotionconceptual9389
@devotionconceptual9389 4 жыл бұрын
🎯 🐂🚩
@shradharamakrishnan1092
@shradharamakrishnan1092 4 жыл бұрын
Thank you!!