CYCLIC PERMUTATION EQUALITY
1:36
7 сағат бұрын
Temukan nilai minimum X+Y
1:19
14 сағат бұрын
Solving Non Linear Equation
1:33
19 сағат бұрын
The Simplest Way to Solve This
1:32
Asymmetric roots, can you solve?
1:44
Quite easy, can you solve it??
3:13
14 күн бұрын
You can definitely solve it
2:30
21 күн бұрын
Easy Problem of Algebra
2:54
21 күн бұрын
Can you prove it??
1:35
21 күн бұрын
f(2010)=??     Can You Solve It?
1:18
21 күн бұрын
p-q=???
1:16
21 күн бұрын
Recursive Problem (2)
1:43
21 күн бұрын
Not So Hard Problem
2:57
28 күн бұрын
Can You Solve This Problem
1:25
28 күн бұрын
Easy IMO Problem
1:43
Ай бұрын
Recursive Problem
1:46
Ай бұрын
Easy Equation of Mathematic
1:07
Find x??
1:15
Ай бұрын
Пікірлер
@MatematikaAsyik-n8e
@MatematikaAsyik-n8e 6 күн бұрын
👍
@CodexMathematica
@CodexMathematica 6 күн бұрын
Thanks
@AlviFoxi
@AlviFoxi 8 күн бұрын
Sekali - kali bahas osp ya
@CodexMathematica
@CodexMathematica 8 күн бұрын
Ok bro, ditunggu ya 👍
@jalanjalansederhana
@jalanjalansederhana 16 күн бұрын
Iya juga, ❤
@jalanjalansederhana
@jalanjalansederhana 16 күн бұрын
@MatematikaMantap
@MatematikaMantap 16 күн бұрын
Nice
@CodexMathematica
@CodexMathematica 16 күн бұрын
Yup,thanks for waching my video
@MatematikaMantap
@MatematikaMantap 16 күн бұрын
Not so hard
@charlesokuom8747
@charlesokuom8747 16 күн бұрын
Well presented
@CodexMathematica
@CodexMathematica 16 күн бұрын
Glad you liked it
@MathTrick-t7v
@MathTrick-t7v 16 күн бұрын
Amazing
@CodexMathematica
@CodexMathematica 16 күн бұрын
Thanks 🙏🙏
@AlviFoxi
@AlviFoxi 23 күн бұрын
Sekali sekali bahas pelatnas bang
@CodexMathematica
@CodexMathematica 23 күн бұрын
Tapi soal-soal pelatnas sudah banyak jg bro penyelesaiannya di internet
@universall_1
@universall_1 28 күн бұрын
Terlalu cepat pembahasannya
@CodexMathematica
@CodexMathematica 28 күн бұрын
Terima kasih atas masukannya, untuk video berikutnya akan lebih clear lagi step by step penyelesaiannya
@Cripgod
@Cripgod 28 күн бұрын
Nice!
@CodexMathematica
@CodexMathematica 28 күн бұрын
Thanks,👍👍
@TheEzz09
@TheEzz09 Ай бұрын
I think you mean Z^+ in the statement of the problem in the beginning rather than R^+. Also this is not a proof, since you didn't account for p-6 and p+6 not being prime, and hence having some other combination of prime factors on the right equaling the two factors on the left. An analysis of the possibilities for prime factors mod 6 works though. Namely, p-6 = p+6 = p (mod 6), so there are two cases: First case: They're both = 3 (mod 6), in which case p=3 (mod 6). Since p is prime, this forces p=3, and we are in the case you presented. Second case: They're both = 1 or 5 (mod 6). If they are = 1 (mod 6), then they individually have an even number of prime factors congruent to 5 (mod 6). If they are = 5 (mod 6), then they individually have an odd number of prime factors congruent to 5 (mod 6). Either way, when you pool all the prime factors on the right, you will have an even number which are congruent to 5 (mod 6). Then, a regrouping of the factors into say k and m, will always have either an odd or an even number of factors = 5 (mod 6) in each grouping. In the first case, k=m=5 (mod 6), and their sum will be k+m = 10 = 4 (mod 6). In the second case, k=m=1 (mod 6) and their sum will be k+m = 2 (mod 6). However, when you consider the system of equations that arises from this grouping, it looks like: 3a+2b=k 3a-2b=m Adding, we have 6a=k+m. From above, we know k+m = 2 or 4 (mod 6). But 6a=0 (mod 6), so this is a contradiction. So this case cannot occur; we must have p=3 (mod 6).
@CodexMathematica
@CodexMathematica Ай бұрын
Apologies, do we really need to use the concept of modulo at the beginning of the solution? I think we should first explore the possibility of applying (mod6), rather than starting with it outright. Would it not be less comprehensive to skip the algebraic approach in factoring (p^2−36)=(p−6)(p+6)? And yes, I meant Z ^+ not R^+. Thank you for the correction, and I appreciate your explanation. I hope that in my next video, my explanation can be more complete.
@TheEzz09
@TheEzz09 Ай бұрын
​@CodexMathematica hmm, I'm not entirely sure what you mean by starting with it outright vs. applying it. Certainly one could organize this proof in a different way, where you first decompose it algebraically as (3a+2b)(3a-2b)=km, where k, m represent some groupings of the prime factors of p-6 and p+6, and then go into cases mod 6. This would be essentially the same proof though. Alternatively, one could look at the original equation mod 6: First, the equation could be rewritten as 3a^2+2b^2=p^2 mod 6. Then p = 1, 3 or 5 mod 6, hence p^2=1 or 3 mod 6. Also, a, b = 0, 1... 4 or 5 mod 6, hence a^2, b^2 = 0, 1, 3 or 4 mod 6. Then 3a^2=0 or 3 mod 6 and 2b^2=0 or 2 mod 6. Putting these together, 3a^2+2b^2=0, 2, 3 or 5 mod 6. For this to equal p^2 mod 6 (recall the possibilities are 1 or 3), we must have that the mods are 3 on both sides. But p^2=3 mod 6 iff p=3.
@CodexMathematica
@CodexMathematica Ай бұрын
@@TheEzz09 I didn't think of applying that at the beginning, so I went straight to the algebraic solution. I admit that after studying your comment, my solution wasn't very strong or complete. Thank you for your correction
@mineray1597
@mineray1597 Ай бұрын
nice
@CodexMathematica
@CodexMathematica Ай бұрын
Thanks
@AlviFoxi
@AlviFoxi Ай бұрын
Akhirnya bahasa Indonesia yuhu
@CodexMathematica
@CodexMathematica Ай бұрын
@@AlviFoxi mau cari sub dr indo juga bro , lama dapat sub 😂😂
@MatematikaAsyik-n8e
@MatematikaAsyik-n8e Ай бұрын
Mantap bang penjelasannya
@CodexMathematica
@CodexMathematica Ай бұрын
Terima kasih
@vishalmishra3046
@vishalmishra3046 Ай бұрын
24 = A^2 - n^2 = (A+n) (A-n) = 6 x 4 => A = 5 and n = 1 (for A,n to be integers, the factors need to be both even or both odd but not even-odd due to division by 2 unlike 8x3=24). 9 = n^2 - B^2 = (n+B)(n-B) = 3 x 3 => n = 3 and B = 0 OR 9x1 so n = 5 and B = 4 Only common positive integer solution is n = 5 to get A-B = 7 - 4 = 3
@CodexMathematica
@CodexMathematica Ай бұрын
@@vishalmishra3046 thanks bro for your another solution
@vishalmishra3046
@vishalmishra3046 Ай бұрын
*Here are all 5 integer solutions for A* Check if x+y = 0 = a works. It does, so that's 1 answer. Then, assume non-zero and divide everywhere using (a^n + b^n) / (a+b) for odd n (1,3,5) formula, to get 1 = x^2 - xy + y^2 = x^4 + y^4 + (xy)^2 - xy (x^2 + y^2) = a/a = 1 a^2 = (x+y)^2 = x^2 + y^2 + 2 xy = 1 + xy + 2xy = 1 + 3xy, so xy = (a^2 - 1)/3, so x^2 + y^2 = 1 + xy = 1 + (a^2 - 1)/3 = (a^2+2)/3. Lastly, apply (x^2 + y^2 = (a^2+2)/3 AND xy = (a^2 - 1)/3 into the expansion above of (x^5+y^5)/(x+y) to get a quadratic equation in a^2 as follows, 1 = x^4 + y^4 + (xy)^2 - xy (x^2 + y^2) = (x^2 + y^2)^2 - (xy)^2 - xy (x^2+y^2) = common denominator 9, so = 1/9 [ (a^2+2)^2 - (a^2-1)^2 - (a^2-1)(a^2+2) ] So, (2a^2 + 1)(3) - (a^2)^2 + a^2 - 2) = 9 => (a^2)^2 - 5 a^2 + 4 = 0 => (a^2 - 1)(a^2 - 4) = 0 => a^2 = 1 or 4, so a = +/- 1 or +/- 2 *Finally* -2 <= a <= 2 (that would be all 5 integer solutions of a). [ x and y are also computable from a^2 if needed using xy = (a^2-1)/3 = 0 or 1 and x^2 + y^2 = (a^2+2)/3 = 1 or 2 ]
@CodexMathematica
@CodexMathematica Ай бұрын
@@vishalmishra3046 thanks for your comment
@vishalmishra3046
@vishalmishra3046 Ай бұрын
With large numbers, checking if it's prime or composite is so much easier than finding its factors. For example, is this number prime or composite ? *1180486325947394189842626845060356983501034478265470980260373* What are its prime factors if it is composite ?
@CodexMathematica
@CodexMathematica Ай бұрын
Yes, it is very difficult, I agree with you. And if we look at problems of the same type as this one, they always follow a pattern, and that pattern must be solved first. That’s how I see it
@ابراهيمجمعة-ن2غ
@ابراهيمجمعة-ن2غ Ай бұрын
EXCELLENCE
@CodexMathematica
@CodexMathematica Ай бұрын
Easy problem bro
@ابراهيمجمعة-ن2غ
@ابراهيمجمعة-ن2غ Ай бұрын
افضل حل
@CodexMathematica
@CodexMathematica Ай бұрын
Thanks
@Matematik-r1m
@Matematik-r1m Ай бұрын
Soalnya settingan
@AstungkaraB-o7w
@AstungkaraB-o7w Ай бұрын
It is too easy
@CodexMathematica
@CodexMathematica Ай бұрын
yes, warming up for the real game
@AlviFoxi
@AlviFoxi Ай бұрын
Ada baiknya jika menyertakan sumber olim 🙏🏻🙏🏻
@CodexMathematica
@CodexMathematica Ай бұрын
Ok, kedepan mungkin semua sumber akan saya sertakan
@BudiIwan-h1i
@BudiIwan-h1i Ай бұрын
By geometry series
@CodexMathematica
@CodexMathematica Ай бұрын
@@BudiIwan-h1i yes
@KurkYshi
@KurkYshi Ай бұрын
Im sleeping
@CodexMathematica
@CodexMathematica Ай бұрын
Are you yoshi?
@Chaplin_Kumisless
@Chaplin_Kumisless Ай бұрын
Clear as crystal
@CodexMathematica
@CodexMathematica Ай бұрын
Thanks
@Chaplin_Kumisless
@Chaplin_Kumisless Ай бұрын
Good work, Dude!
@CodexMathematica
@CodexMathematica Ай бұрын
Thanks bro, support my channel ya
@AnnaPhilip89
@AnnaPhilip89 Ай бұрын
Simpel
@CodexMathematica
@CodexMathematica Ай бұрын
Yeah that is easy
@GameKu-v9o
@GameKu-v9o Ай бұрын
good
@CodexMathematica
@CodexMathematica Ай бұрын
Thanks
@MatematikaMantap
@MatematikaMantap Ай бұрын
Good jobb ❤
@MatematikaMantap
@MatematikaMantap Ай бұрын
Simpel sekali
@MatematikaMantap
@MatematikaMantap Ай бұрын
How can you find the solution ?
@CodexMathematica
@CodexMathematica Ай бұрын
Trial and error
@nickfielding5685
@nickfielding5685 Ай бұрын
Nato Should removed there occupation force from Serbia or Ukraine should stop wanting to occuping 4 inderpent country.
@JJ-zp5jz
@JJ-zp5jz Ай бұрын
Why can’t x=y=1 so a=2 or x=y=-1 so a=-2?
@CodexMathematica
@CodexMathematica Ай бұрын
I apologize, you are correct, my answer was incomplet, thanks for your correction
@AlviFoxi
@AlviFoxi Ай бұрын
Soal OSK SMA 2023 nihh
@CodexMathematica
@CodexMathematica Ай бұрын
@@AlviFoxi yup, exactly bro 😁👍
@charlesokuom8747
@charlesokuom8747 Ай бұрын
Well solved
@CodexMathematica
@CodexMathematica Ай бұрын
@@charlesokuom8747 thanks sir
@aakashgupta470
@aakashgupta470 Ай бұрын
How did you get (2n-1)!!
@CodexMathematica
@CodexMathematica Ай бұрын
let see: 1x2x3x…x(2n-3)x(2n-2)x(2n-1)x2n=(2n)! The factorial above consists of two parts: 2nx(2n-2)x(2n-4)…x2 and (2n-1)x(2n-3)x…x1 = (2n-1)!! See (2n)! = 1x2x3x…x(2n-3)x(2n-2)x(2n-1)x2n We can group it into two parts (2n)! = 1x2x3x…x(2n-3)x(2n-2)x(2n-1)x2n=(2nx(2n-2)x(2n-4)x…x2)( (2n-1)x(2n-3)x…x1) (2n)! =(2nx(2n-2)x(2n-4)x…x2) (2n-1)!! (2nx(2n-2)x(2n-4)x…x2)=2^n x n! (2n)!= (2^n x n!) (2n-1)!! (2n-1)!!= (2n)!/ (2^n x n!) maybe you can see en.wikipedia.org/wiki/Double_factorial I apologize for the mistake in the video between 00:56 and 1:00, where I used the wrong parentheses; it should have been (2n)!, not 2n!. I will be more careful next time for the upcoming videos.
@aakashgupta470
@aakashgupta470 Ай бұрын
@@CodexMathematica thanks for clearing that😄
@GameKu-v9o
@GameKu-v9o Ай бұрын
Ajarin matematika pak
@annamarthin983
@annamarthin983 Ай бұрын
Beautiful proof❤
@mathlearn-l5b
@mathlearn-l5b Ай бұрын
👍
@annamarthin983
@annamarthin983 Ай бұрын
Good❤
@CodexMathematica
@CodexMathematica Ай бұрын
Thanks
@RiniKartika-if3vm
@RiniKartika-if3vm Ай бұрын
Gak ada yg lebih easy lagi😊😊
@CodexMathematica
@CodexMathematica Ай бұрын
@@RiniKartika-if3vm yes, i think there are so many easier mathematics problem 😁😁😁👍