Tapi soal-soal pelatnas sudah banyak jg bro penyelesaiannya di internet
@universall_128 күн бұрын
Terlalu cepat pembahasannya
@CodexMathematica28 күн бұрын
Terima kasih atas masukannya, untuk video berikutnya akan lebih clear lagi step by step penyelesaiannya
@Cripgod28 күн бұрын
Nice!
@CodexMathematica28 күн бұрын
Thanks,👍👍
@TheEzz09Ай бұрын
I think you mean Z^+ in the statement of the problem in the beginning rather than R^+. Also this is not a proof, since you didn't account for p-6 and p+6 not being prime, and hence having some other combination of prime factors on the right equaling the two factors on the left. An analysis of the possibilities for prime factors mod 6 works though. Namely, p-6 = p+6 = p (mod 6), so there are two cases: First case: They're both = 3 (mod 6), in which case p=3 (mod 6). Since p is prime, this forces p=3, and we are in the case you presented. Second case: They're both = 1 or 5 (mod 6). If they are = 1 (mod 6), then they individually have an even number of prime factors congruent to 5 (mod 6). If they are = 5 (mod 6), then they individually have an odd number of prime factors congruent to 5 (mod 6). Either way, when you pool all the prime factors on the right, you will have an even number which are congruent to 5 (mod 6). Then, a regrouping of the factors into say k and m, will always have either an odd or an even number of factors = 5 (mod 6) in each grouping. In the first case, k=m=5 (mod 6), and their sum will be k+m = 10 = 4 (mod 6). In the second case, k=m=1 (mod 6) and their sum will be k+m = 2 (mod 6). However, when you consider the system of equations that arises from this grouping, it looks like: 3a+2b=k 3a-2b=m Adding, we have 6a=k+m. From above, we know k+m = 2 or 4 (mod 6). But 6a=0 (mod 6), so this is a contradiction. So this case cannot occur; we must have p=3 (mod 6).
@CodexMathematicaАй бұрын
Apologies, do we really need to use the concept of modulo at the beginning of the solution? I think we should first explore the possibility of applying (mod6), rather than starting with it outright. Would it not be less comprehensive to skip the algebraic approach in factoring (p^2−36)=(p−6)(p+6)? And yes, I meant Z ^+ not R^+. Thank you for the correction, and I appreciate your explanation. I hope that in my next video, my explanation can be more complete.
@TheEzz09Ай бұрын
@CodexMathematica hmm, I'm not entirely sure what you mean by starting with it outright vs. applying it. Certainly one could organize this proof in a different way, where you first decompose it algebraically as (3a+2b)(3a-2b)=km, where k, m represent some groupings of the prime factors of p-6 and p+6, and then go into cases mod 6. This would be essentially the same proof though. Alternatively, one could look at the original equation mod 6: First, the equation could be rewritten as 3a^2+2b^2=p^2 mod 6. Then p = 1, 3 or 5 mod 6, hence p^2=1 or 3 mod 6. Also, a, b = 0, 1... 4 or 5 mod 6, hence a^2, b^2 = 0, 1, 3 or 4 mod 6. Then 3a^2=0 or 3 mod 6 and 2b^2=0 or 2 mod 6. Putting these together, 3a^2+2b^2=0, 2, 3 or 5 mod 6. For this to equal p^2 mod 6 (recall the possibilities are 1 or 3), we must have that the mods are 3 on both sides. But p^2=3 mod 6 iff p=3.
@CodexMathematicaАй бұрын
@@TheEzz09 I didn't think of applying that at the beginning, so I went straight to the algebraic solution. I admit that after studying your comment, my solution wasn't very strong or complete. Thank you for your correction
@mineray1597Ай бұрын
nice
@CodexMathematicaАй бұрын
Thanks
@AlviFoxiАй бұрын
Akhirnya bahasa Indonesia yuhu
@CodexMathematicaАй бұрын
@@AlviFoxi mau cari sub dr indo juga bro , lama dapat sub 😂😂
@MatematikaAsyik-n8eАй бұрын
Mantap bang penjelasannya
@CodexMathematicaАй бұрын
Terima kasih
@vishalmishra3046Ай бұрын
24 = A^2 - n^2 = (A+n) (A-n) = 6 x 4 => A = 5 and n = 1 (for A,n to be integers, the factors need to be both even or both odd but not even-odd due to division by 2 unlike 8x3=24). 9 = n^2 - B^2 = (n+B)(n-B) = 3 x 3 => n = 3 and B = 0 OR 9x1 so n = 5 and B = 4 Only common positive integer solution is n = 5 to get A-B = 7 - 4 = 3
@CodexMathematicaАй бұрын
@@vishalmishra3046 thanks bro for your another solution
@vishalmishra3046Ай бұрын
*Here are all 5 integer solutions for A* Check if x+y = 0 = a works. It does, so that's 1 answer. Then, assume non-zero and divide everywhere using (a^n + b^n) / (a+b) for odd n (1,3,5) formula, to get 1 = x^2 - xy + y^2 = x^4 + y^4 + (xy)^2 - xy (x^2 + y^2) = a/a = 1 a^2 = (x+y)^2 = x^2 + y^2 + 2 xy = 1 + xy + 2xy = 1 + 3xy, so xy = (a^2 - 1)/3, so x^2 + y^2 = 1 + xy = 1 + (a^2 - 1)/3 = (a^2+2)/3. Lastly, apply (x^2 + y^2 = (a^2+2)/3 AND xy = (a^2 - 1)/3 into the expansion above of (x^5+y^5)/(x+y) to get a quadratic equation in a^2 as follows, 1 = x^4 + y^4 + (xy)^2 - xy (x^2 + y^2) = (x^2 + y^2)^2 - (xy)^2 - xy (x^2+y^2) = common denominator 9, so = 1/9 [ (a^2+2)^2 - (a^2-1)^2 - (a^2-1)(a^2+2) ] So, (2a^2 + 1)(3) - (a^2)^2 + a^2 - 2) = 9 => (a^2)^2 - 5 a^2 + 4 = 0 => (a^2 - 1)(a^2 - 4) = 0 => a^2 = 1 or 4, so a = +/- 1 or +/- 2 *Finally* -2 <= a <= 2 (that would be all 5 integer solutions of a). [ x and y are also computable from a^2 if needed using xy = (a^2-1)/3 = 0 or 1 and x^2 + y^2 = (a^2+2)/3 = 1 or 2 ]
@CodexMathematicaАй бұрын
@@vishalmishra3046 thanks for your comment
@vishalmishra3046Ай бұрын
With large numbers, checking if it's prime or composite is so much easier than finding its factors. For example, is this number prime or composite ? *1180486325947394189842626845060356983501034478265470980260373* What are its prime factors if it is composite ?
@CodexMathematicaАй бұрын
Yes, it is very difficult, I agree with you. And if we look at problems of the same type as this one, they always follow a pattern, and that pattern must be solved first. That’s how I see it
@ابراهيمجمعة-ن2غАй бұрын
EXCELLENCE
@CodexMathematicaАй бұрын
Easy problem bro
@ابراهيمجمعة-ن2غАй бұрын
افضل حل
@CodexMathematicaАй бұрын
Thanks
@Matematik-r1mАй бұрын
Soalnya settingan
@AstungkaraB-o7wАй бұрын
It is too easy
@CodexMathematicaАй бұрын
yes, warming up for the real game
@AlviFoxiАй бұрын
Ada baiknya jika menyertakan sumber olim 🙏🏻🙏🏻
@CodexMathematicaАй бұрын
Ok, kedepan mungkin semua sumber akan saya sertakan
@BudiIwan-h1iАй бұрын
By geometry series
@CodexMathematicaАй бұрын
@@BudiIwan-h1i yes
@KurkYshiАй бұрын
Im sleeping
@CodexMathematicaАй бұрын
Are you yoshi?
@Chaplin_KumislessАй бұрын
Clear as crystal
@CodexMathematicaАй бұрын
Thanks
@Chaplin_KumislessАй бұрын
Good work, Dude!
@CodexMathematicaАй бұрын
Thanks bro, support my channel ya
@AnnaPhilip89Ай бұрын
Simpel
@CodexMathematicaАй бұрын
Yeah that is easy
@GameKu-v9oАй бұрын
good
@CodexMathematicaАй бұрын
Thanks
@MatematikaMantapАй бұрын
Good jobb ❤
@MatematikaMantapАй бұрын
Simpel sekali
@MatematikaMantapАй бұрын
How can you find the solution ?
@CodexMathematicaАй бұрын
Trial and error
@nickfielding5685Ай бұрын
Nato Should removed there occupation force from Serbia or Ukraine should stop wanting to occuping 4 inderpent country.
@JJ-zp5jzАй бұрын
Why can’t x=y=1 so a=2 or x=y=-1 so a=-2?
@CodexMathematicaАй бұрын
I apologize, you are correct, my answer was incomplet, thanks for your correction
@AlviFoxiАй бұрын
Soal OSK SMA 2023 nihh
@CodexMathematicaАй бұрын
@@AlviFoxi yup, exactly bro 😁👍
@charlesokuom8747Ай бұрын
Well solved
@CodexMathematicaАй бұрын
@@charlesokuom8747 thanks sir
@aakashgupta470Ай бұрын
How did you get (2n-1)!!
@CodexMathematicaАй бұрын
let see: 1x2x3x…x(2n-3)x(2n-2)x(2n-1)x2n=(2n)! The factorial above consists of two parts: 2nx(2n-2)x(2n-4)…x2 and (2n-1)x(2n-3)x…x1 = (2n-1)!! See (2n)! = 1x2x3x…x(2n-3)x(2n-2)x(2n-1)x2n We can group it into two parts (2n)! = 1x2x3x…x(2n-3)x(2n-2)x(2n-1)x2n=(2nx(2n-2)x(2n-4)x…x2)( (2n-1)x(2n-3)x…x1) (2n)! =(2nx(2n-2)x(2n-4)x…x2) (2n-1)!! (2nx(2n-2)x(2n-4)x…x2)=2^n x n! (2n)!= (2^n x n!) (2n-1)!! (2n-1)!!= (2n)!/ (2^n x n!) maybe you can see en.wikipedia.org/wiki/Double_factorial I apologize for the mistake in the video between 00:56 and 1:00, where I used the wrong parentheses; it should have been (2n)!, not 2n!. I will be more careful next time for the upcoming videos.
@aakashgupta470Ай бұрын
@@CodexMathematica thanks for clearing that😄
@GameKu-v9oАй бұрын
Ajarin matematika pak
@annamarthin983Ай бұрын
Beautiful proof❤
@mathlearn-l5bАй бұрын
👍
@annamarthin983Ай бұрын
Good❤
@CodexMathematicaАй бұрын
Thanks
@RiniKartika-if3vmАй бұрын
Gak ada yg lebih easy lagi😊😊
@CodexMathematicaАй бұрын
@@RiniKartika-if3vm yes, i think there are so many easier mathematics problem 😁😁😁👍