Since one equation with two unknowns is given, the considered task has infinitely many solutions. Therefore, this task makes sense only if it needs to be solved in integer numbers. So, it is assumed that x and y are integer numbers. Then the approach you have described (i.e. using the notations a=x^(y/2), b=y^(1/2), transforming the original problem into the form (a-b)*(a+b)={1*77; 7*11}) is invalid, since b=y^(1/2) may not be an integer. P.S. Nevertheless, the equation x^y-y=77 can be solved in integer numbers, but not by your false approach, and by a completely different approach! This equation has a finite number of integer solutions! Best wishes, Sharif E. Guseynov Riga, Latvia
@quynhnguyen387353 минут бұрын
THẦY Ở COLOMBIA HAY GERMAN?
@ConradoPeter-hl5ij5 сағат бұрын
(we want to find a p*q=a²+2ab+b; with p and q ∈ N*) So, we will star isolating b and a in the equation to find a divisible term after: For every b and a, not necessarly in Z: a²+2ab+b=44 a²+b(2a+1)=44 2a²+a+b(2a+1)=44+a²+a a(2a+1)+b(2a+1)=44+a²+a (a+b)(2a+1)=44+a²+a a+b= [a²+a+44]/(2a+1) ● b = {[a²+a+44]/(2a+1)}-a; with 2a+1≠0 But, remember b ∈ N*, then: make it: Q(a)=a²+a+44 and q(a)=2a+1 then, [a²+a+44]/(2a+1)=[Q(a)]/[q(a)]=p(a) and p(a)=n, n ∈ N*. /////////////////////////////////////////////////// finding the p(a) and r(a): Q(a) = a² + a + 44 | q(a) =(2a+1) -a² - a/2 ||p(a)=(a/2)+(1/4) -----------‐ 0 + a/2 + 44 - a/2 - 1/4 ------------------- 0 + 175/4 = r(a) ///////////////////////////////////////////////// Constructing p*q into the original equation: So, Q(a)=q(a)*p(a) + r(a) ● a²+a+44=(2a+1)*[(a/2)+(1/4)] +(175/4) retake the original equation: a²+2ab+b=44 a²+b(2a+1)=44 2a²+a+b(2a+1)=44+a²+a a(2a+1)+b(2a+1)=44+a²+a (a+b)(2a+1)=44+a²+a; but remember Q(a)=44+a²+a then, (a+b)(2a+1)=(2a+1)[(a/2)+(1/4)]+(175/4) make 4 times the equation: (4a+4b)(2a+1)=(2a+1)[2a+1]+175 (4a+4b)(2a+1)=(2a+1)²+175 (4a+b)(2a+1) - (2a+1)² =175 (2a+1)[(4a+4b)-(2a+1)]=175 (2a+1)[4a-2a+4b-1]=175 (2a+1)(2a+4b+1)=175 Where are the p and q? It is here the term p=(2a+1) and it the term q=[(2a+1)+4b]. ■(2a+1)[(2a+1)+4b]=175; n=2a+1 better make like this way: ■n(n+4b)=175 Now, we can thing the possibilites: n×(n+4b)=5²×7; with ■D(175)={1;5;7;25;35;175} And ■ n ⊂ D(175) (I) then, n ⊂ {1;5;7;25;35;175} ////////////////////////////////////////////////// Considering the domain of the question: remember that n=2a+1 and consider a ∈ N* because the question already said it. And, remember b ∈ N. And think about a domain of a and b. So, retake a²+2ab+b=44 you can see that each term of the equation cannot be bigger than 44. Then, a²<44; 2ab<44; b<44 taking a²<44 and a ∈ N* then, 0<a<7 but a ∈ N* Therefore, ■ 6≥a≥1 retake n=2a+1 and take 0<a<7. then, ■13≥n≥3. (II) /////////////////////////////////////////////// take (I) and (II): n=5 or n=7 therefore, a=2 or a=3 n×(n+4b)=[D(175)]×[D'(175)] input a={2;3} into equation: a²+2ab+b=44 a=2 2²+2*2*b+b=44 4+4b+b=44 5b=41 b=41/5; but b belongs to N* so, a=2 is not a solution. a=3 3²+2*3*b+b=44 9+6b+b=44 7b=35 b=5 Therefore, ■ a=3 and b=5 is the solution. ------------‐------- / / -----‐------------
@ConradoPeter-hl5ij8 сағат бұрын
a²+2ab+b=44 a, b ∈ N Then, a² ∈ N, ab ∈ N, (a-b) ∈ Z and (a+b) ∈ N. then, a²<44, 2ab<44, b<44 so, ■a²<44 => a<√44<7 => a<7 then 0<a<7 and a ∈ N ● 6 ≥ a ≥ 1with a ∈ N ■2ab<44 => ab<22 ■b=44-a²-2ab if a=1 (the smalest a possible) then, b=44-1-2b 3b=43 b=43/3≈ 7 (the biggest b); but b ∈ N, then 7≥ b>0 if a=6 (biggest) then, b=44-36-6b 7b=8 b≈1 (smalest) then, ● 7 ≥ b ≥ 1 with b ∈ N ■ab ---> 7*1=7. (smallest ab) 6*2=12 5*3=15 4*4=16 (biggest ab) then, 14 < 2ab < 32 So, a²+2ab+b=44 a²+b=44-2ab 44-14 > a²+b > 44-32 30 > a²+b > 12 then, 30 - b > a² > 12 - b 30 -1 > a² > 12 - 7 29 > a² > 5 36 > 29 > a² > 5. > 4 6² > a² > 2² 6 > a > 2 with a ∈ N then, 5 ≥ a. ≥ 3 input a={3;4;5} in the equation: a²+2ab+b=44 when, a=3 3²+2*3b+b=44 9+6b+b=44 7b=35 => b=5 so, a=3 and b=5 is a solution a=4 4²+2*4b+b=44 16+8b+b=44 16+9b=44 9b=28 b≈7 is not a solution a=5 5²+2*5b+b=44 25+10b+b=44 25+11b=44 11b=19 is not a solution. Therefore, a=3 and b=5 is the anwser.
@edwardwang792911 сағат бұрын
Once getting (m+1)^4 - (m-1)^4 = 80,unfolding left side and merging them. 2* (4m^3 + 4m) = 80,then m^3 + m = 10. Guessing m = 2 is one of solutions....
@lollol-tt3fx14 сағат бұрын
WHAT HE FUCK THIS NIS NOT MATH OLYMPIAD LEVEL WHAT IN THE ACTUAL FUCK ARE YOU ON ABOUT THIS IS SO FUCKING DUMB, STOP MAKING HTESE SHITTY CLICKBAITS
@souzasilva547114 сағат бұрын
Se tivesse feito 6^x = 3^x *2^x , e a = 3^x; b=2^x, ficaria bem mais simples. Quadrar e dividir por ab. Chegaria em a/b + b/a - 3 = 0, Fazendo a/b = k e ... ( If I had done 6^x = 3^x *2^x , and a= 3^x; b =2^x, it would be much simpler. Square and divide by ab. It would arrive at a/b + b/a - 3 = 0, making a/b = k and...).
@SALogics14 сағат бұрын
Truque muito bom! ❤
@quynhnguyen387314 сағат бұрын
Ngủ sớm. Mọi ý tưởng cạn kiệt
@gelbkehlchen14 сағат бұрын
Solution: 4^x-8*x = 0 = 4^2-8*2 |The same operations are done on the left side of the equation with x as on the right side of the equation with 2, therefore x = 2. When you use the complicated Lambert function, you make also a comparisation between the left side of the equation with the right side of the equation. And you can save yourself this complicated comparison if you make this comparison right away.
@SALogics14 сағат бұрын
Very nice trick! ❤
@quynhnguyen387314 сағат бұрын
Đặt U = . V= -. (U+V)^3 =? (U = a^1/2 .V =b^1/2)
@quynhnguyen387316 сағат бұрын
KHÔNG ĐỦ KIÊN NHẪN. NHỜ THẦY GIÚP
@quynhnguyen387316 сағат бұрын
XEM VIET CÓ OK KHÔNG THẦY.
@SALogics16 сағат бұрын
vâng tại sao không
@quynhnguyen387316 сағат бұрын
a^2_b^2_a.b=0.
@nasrullahhusnan228917 сағат бұрын
(27^x)+x=0 --> 27^x=-x Raise to 1/x and noting that 27=3³: 3³=(-x)^(1/x) =(1/t)^(-t) by letting t=-1/x =[(1/t)^(-1)]^t =t^t --> t=3 -1/x=3 --> x=-⅓
@SALogics16 сағат бұрын
Very nice trick! ❤
@quynhnguyen387317 сағат бұрын
Hằng Đẳng thức hả thầy.
@eduardionovich442517 сағат бұрын
Решил устно. Конечно,знал метод.
@SALogics16 сағат бұрын
Да, ❤
@RobotKiwiTheFailureKid18 сағат бұрын
x=3
@SALogics16 сағат бұрын
Yes, you are right! ❤
@ConradoPeter-hl5ij19 сағат бұрын
(x-1)½+(x+2)½=3; make it: u=(x-1)½ and v=(x+2)½ then, u+v=3 (u+v)(u-v)=3(u-v) u²-v²=3(u-v); but u²=(x-1) and v²=x+2 then, (x-1)-(x+2)= 3(u-v) -3=3(u-v) u-v=-1 make the sistem: u+v=3 u-v=-1 then, 2u=2 therefore, u=1 and v=2 But u=(x-1)½ and v=(x+2)½ then, (x-1)½=1 and (x+2)½=2 therefore, x-1=1 => x=2 and x+2=4 =>x=2 therefore, x=2 is a solution. -------‐-------‐------- / / -------‐--------‐‐‐-- simplify one term way: (x-1)½+(x+2)½=3; u=x+2 =>x-1=u-3 (u-3)½+u½=3 (u-3)½=3-u½ (u-3)½=(-1)[(u½)-3] [(u-3)½]²={(-1)[(u½)-3]}² u-3=(-1)²[(u½)-3]² u-3=[(u½)-3]² u-3=(u½)²-2*(u½)*3+3² u-3=u-6(u½)+9 6(u½)=12 u½=2 u=4 but u=x+2; then 4=x+2. therefore x=2 ---------------------- / / --------------------- cheating way: (knowing √1=1) (x-1)½+(x+2)½=3 when x-1=1, then (x-1)½=1 because √1=1. So, 1+√(2+2)=3 1+√4=3 1+2=3 true. therefore x=2 is a solution. ----‐-------------- / / --------------------- algebrical way: (x-1)½+(x+2)½=3; make it: a=(x-1)½ and b=(x+2)½ then a+b=3 b = 3-a b(3+a) = (3-a)(3+a) 3b+ab=3²-a²; but 3=a+b (a+b)b+ab=9-a² ab+b²+ab=9-a² 2ab=9-(a²+b²) 2√(x-1)√(x+2)=9-[(x-1)+(x+2)] 2√[(x-1)(x+2)]=9-[2x+1] 2√[x²+(-1+2)x+(-1)(2)]=9-2x-1 2√[x²+x-2]=8-2x 2(x²+x-2)½=2(4-x) (x²+x-2)½=(4-x); make it: c=(x²+x-2)½ and b=(4-x) c=d c*d=d*d cd=d², but c=d; then cd=c² therefore, c²=d² [(x²+x-2)½]²=(4-x)² x²+x-2=(4²-2*4*x+x²) x²+x-2=(16-8x+x²) x²+(x-2)=x²+(16-8x) (x-2)=(16-8x) (x-2)=8(2-x) (x-2)=8(-1)(x-2) (1)(x-2)=(-8)(x-2); z=x-2 [1)*z=(-8)*z is true only if: z=0 then, x-2=0 x=2 is a solution.
@SALogics16 сағат бұрын
Very nice trick! I really appreciate that ❤
@SidneiMV20 сағат бұрын
√[6 - √(6 + x)] = x x ≥ 0 √(6 + x) = u √(6 - u) = x 6 + x = u² 6 - u = x² u² - x² = u + x (u + x)(u - x) - (u + x) = 0 (u + x)(u - x - 1) = 0 u = - x ∨ u = x + 1 u = -x => 6 + x = x² x² - x - 6 = 0 (x - 3)(x + 2) = 0 x = 3 ∨ x = -2 [ both are invalid ] u = x + 1 => 6 - (x + 1) = x² x² + x - 5 = 0 *x = (-1 + √21)/2*
@SALogics16 сағат бұрын
Very nice trick! ❤
@philomenaonumah594920 сағат бұрын
ab equals 40, so m×m+1=a, and 2m=b
@SALogics16 сағат бұрын
Very nice trick! ❤
@ArshadeeКүн бұрын
You videos are Brilliant!!! you explain these solutions so well thank you 🙂
@SALogics16 сағат бұрын
You're very welcome! ❤
@-basicmaths862Күн бұрын
Answer=25
@SALogics16 сағат бұрын
Yes, 25 and 1/25
@subratabiswas2502Күн бұрын
4ab=(a+b)^2-(a-b)^2 formula should have been applied without going into so much complexity
@SALogics16 сағат бұрын
Very nice trick! ❤
@adamnybackКүн бұрын
You forgot to explain the reasoning behind the various steps, in particular the first one.
@SALogics16 сағат бұрын
I have tried my best to explain everything! ❤
@gasior529Күн бұрын
3:57 "it is obvious that y=3" NOOO! It is obvious that y=3 IS one of the solutions, but why it is the one and only? It is not obvious! I can say more, if you replace 27 with 0.99 there will be 2 solutions. You HAVE TO JUSTIFY that there is only one solution in this case.
@SALogics16 сағат бұрын
Is there another solution please share? ❤
@walktowardssunshine4246Күн бұрын
You make things very lengthy at time. When you found (m^2+1)(2m) =20. Its clear that (2^2+1).2.2 = 5.4 = 20. Thus m = 2.
@SALogics16 сағат бұрын
Very nice trick! ❤
@quynhnguyen387315 сағат бұрын
ĐẶT ẨN PHỤ ĐỂ ĐƠN GIẢN HÓA.
@quynhnguyen387315 сағат бұрын
Hoặc giảm số Mũ đưa về A^2-B^2
@prollysineКүн бұрын
case 1 , -ln2/4= -2*ln2*x*e^(-2*ln2*x) , /4/4 * -ln2/4 = 4*-ln2/16 , --> (4*-ln2)*e^((-ln2)^4) , (4*-ln2)*e^(4*-ln2) , / 4*-ln2=2*-ln2*x , -4=-2x , X1=2 , test x1 , OK , case 2 , W(-ln2/4)=-2*ln2*x , -0.2148111164=-2*ln2*x , x2=-0.2148111164/(2*ln2) , test x2 , OK ,
@SALogics16 сағат бұрын
Very nice trick! ❤
@SGuerraКүн бұрын
A questão é muito boa, mas eu demorei uns 10 minutos para encontrar uma solução simples e muito diferente da sua. Parabéns pela escolha. Brasil - Outubro de 2024. The question is very good, but it took me about 10 minutes to find a simple solution that is very different from yours. Congratulations on your choice. Brazil - October 2024.
@SALogics16 сағат бұрын
muito obrigado! Por favor, compartilhe sua solução.❤
@LITHICKROSHANMS-gw2lxКүн бұрын
I like it very much of solution
@SALogics16 сағат бұрын
thank you so much! ❤
@نويصرنويصرКүн бұрын
You have to prove the hypothesis. a=7x²,b=7y²
@SALogics14 сағат бұрын
Ok! ❤
@romybaul6053Күн бұрын
If the original equation is transformed into an equation that has the one variable on one side of the equation and the other variable on the opposite side of the equation, we will have: b=(44-a^2)/(2a+1). From the above relationship, if we assign any value for "a", we will obtain a corresponding value for "b". Therefore, there are infinitely many pair of solutions for "a" and "b". Examples are: (a,b)=(0,44), (2,8), (3,5), (12,-4), (17,-7), (87,-43), (-1,-43),(-3,-7), (-4,-4), (-13,5), (-18,8), (-88,44) and so on.
Если знать таблицу квадратных чисел, то такую задачу можно решить за несколько сикунд 25^2=625
@SALogics14 сағат бұрын
ты прав! ❤
@КонстантинШарашов2 күн бұрын
x=(-3) ?
@MyOneFiftiethOfADollar2 күн бұрын
The method used is rather famously called completing the product or SFFT(Simons favorite factoring trick) Great way create common binomial factors. thanks
W(-(ln4)/8)=W(-ln8xe^(-ln8x)) gives both solution simultaneously
@SALogics14 сағат бұрын
Ok, i will check! ❤
@yakupbuyankara59032 күн бұрын
X=25
@SALogics14 сағат бұрын
You are right! ❤
@yakupbuyankara59032 күн бұрын
M=-1/4
@SALogics14 сағат бұрын
You are right! ❤
@nasrullahhusnan22892 күн бұрын
Note that there are two unknowns in the equation. With no constraint being imposed there are many solution. If (x,y) is a pair of integer the trivial solutions: (x^y)-y=77 =78¹-1 --> (x,y) --> (78,1) =1^(-76)-(-76) --> (1,-76) Other solution: (x^y)-y=81-4 (x^y)-y=3⁴-4 --> (x,y)=(3,4) by comparing the structure. The general approach is [x^(½y)]²-(y^½)²=77 [x^(½y)+(y^½)][x^(½y)-(y^½)]=7×11 x^(½y)+y^½=11 x^(½y)-y^½=7 Half of the sum is x^(½y)=9 Half of the difference is y^½=2 --> y=4. Hence x=3 --> (x,y)=(3,4 ) Thus (x,y)={(-1,76),(3,4),(78,1)}
@SALogics14 сағат бұрын
Very nice! ❤
@SGuerra2 күн бұрын
Que que você fez uma questão bonita. Parabéns 👏👏👏👏👏
You solve in a unique way different from other pls can you solve the equation below a + b + c = 6 a² + b² + c² = 14 a⁸ + b⁸ + c⁸ = ?
@SALogics14 сағат бұрын
Yes of course! ❤
@DJ.Nihad61742 күн бұрын
First method >>>>>>
@SALogics2 күн бұрын
Very nice! ❤
@LITHICKROSHANMS-gw2lx2 күн бұрын
Good effort
@SALogics2 күн бұрын
Thank you so much! ❤
@jasperkok87452 күн бұрын
The first method gives 2 answers, while the second method only gives one. So what about the first answer that resulted from method 1? Is it to be rejected, or doesn’t method 2 give all the correct answers?
@ZionV-d5m2 күн бұрын
Excelente solución
@SALogics2 күн бұрын
Thanks and welcome! ❤
@LITHICKROSHANMS-gw2lx2 күн бұрын
Nice solution sir
@SALogics2 күн бұрын
Thanks and welcome! ❤
@sy81462 күн бұрын
There are infinite solutions. (x, y) = (78, 1), (√79, 2), (80^(1/3), 3), (3, 4), (82^(1/5), 5), (83^(1/6), 6), ・・・ [ (-3, 4) is also one of the solutions. ]
@sidharthpatra47512 күн бұрын
A single equation in 2 variables will always have infinite solutions. I think a part of the question is not mentioned, may be