Пікірлер
@DinsDale-tx4br
@DinsDale-tx4br 2 күн бұрын
1:32 Why not just raise both sides to the mth power first off?
@MütefekkirinTefekkürü
@MütefekkirinTefekkürü 3 күн бұрын
👋👋
@Mathsandolympiad
@Mathsandolympiad 3 күн бұрын
Thank you for watching!
@phhpadhaihalwahai1422
@phhpadhaihalwahai1422 3 күн бұрын
I appreciate that
@Mathsandolympiad
@Mathsandolympiad 3 күн бұрын
Thank you for watching! Do share it with your friends and like and subscribe :)
@AminulIslam-jg6mm
@AminulIslam-jg6mm 5 күн бұрын
Wow!
@Mathsandolympiad
@Mathsandolympiad 4 күн бұрын
Thank you for watching! Do like, Subscribe and share!
@ВалентинаСтанкевич-п6н
@ВалентинаСтанкевич-п6н 6 күн бұрын
А у меня х = 300 и равенство тоже правильное
@Mathsandolympiad
@Mathsandolympiad 4 күн бұрын
Thanks for watching!
@dongweilin5393
@dongweilin5393 9 күн бұрын
√200=10√2=5×2√2=5(√2)³, 2=(√2)²=(√2)^(√2)², 2√200=((√2)^(√2)²) ^(5(√2)³)=((√2)⁵)^(√2)⁵
@Mathsandolympiad
@Mathsandolympiad 9 күн бұрын
Thanks
@cyruschang1904
@cyruschang1904 10 күн бұрын
√(4 + √(24 + 4√20)) = √(4 + 2 + √20)) = √(6 + 2√5) = 1 + √5
@yurenchu
@yurenchu 10 күн бұрын
Thumbnail shows a different expression, without the "+16" . 993*995*997*999 + 16 = = (996-3)*(996-1)*(996+1)*(996+3) + 16 = (996-3)*(996+1) * (996-1)*(996+3) + 16 = (996² - 2*996 - 3) * (996² + 2*996 - 3) + 16 = (996² - 3 - 2*996) * (996² - 3 + 2*996) + 16 = (996² - 3)² - (2*996)² + 16 = ((996²)² - 6*996² + 9) - (4 * 996²) + 16 = (996²)² - 10*996² + 25 = (996² - 5)² Therefore, √( 993*995*997*999 + 16 ) = = √( (996² - 5)² ) = 996² - 5 = (1000 - 4)² - 5 = (1000² - 2*4*1000 + 4²) - 5 = (1,000,000 - 8000 + 16) - 5 = 992,011
@Mathsandolympiad
@Mathsandolympiad 9 күн бұрын
Hey thanks for pointing out - Its changed now. And thanks for watching :) Much appreciated.
@yurenchu
@yurenchu 10 күн бұрын
3ˣ - 3ʸ = 3 3ˣ⁺ʸ = 3 Substitute u = 3ˣ , v = 3ʸ . Note: since x and y are real, u and v must be real and positive. u - v = 3 uv = 3 u = 3/v ==> substitute into first equation 3/v - v = 3 3 - v² = 3v 3 = v² + 3v 3 + 9/4 = v² + 2(3/2)v + (3/2)² 21/4 = (v + 3/2)² v + 3/2 = ±√(21/4) v = -3/2 ± (1/2)√21 v = (-3 - √21)/2 OR v = (-3 + √21)/2 v = (-3 - √21)/2 < 0 ==> no real solution for (x,y) v = (-3 + √21)/2 > 0 ==> ... u - v = 3 ==> u = v+3 = v + 6/2 ... u = (3 + √21)/2 x = ln(u)/ln(3) = ln( (3 + √21)/2 )/ln(3) = [ ln(3 + √21) - ln(2) ]/ln(3) y = ln(v)/ln(3) = ln( (-3 + √21)/2 )/ln(3) = [ ln(-3 + √21) - ln(2) ]/ln(3)
@Mathsandolympiad
@Mathsandolympiad 8 күн бұрын
Thanks
@cyruschang1904
@cyruschang1904 10 күн бұрын
log(√x) = 10^200 √x = 10^(10^200) x = 100^(10^200)
@Mathsandolympiad
@Mathsandolympiad 9 күн бұрын
Thanks for watching
@cyruschang1904
@cyruschang1904 9 күн бұрын
@ Thank you
@ilyashick3178
@ilyashick3178 10 күн бұрын
Just notice x>0 because of radical Steps: A.Raise to a power of 2 to simplify an equation. B.Introduce t = 25^2 C.it is nested radicals & can be to overwrite as t((^1/x)^1/x)=t or t^(1/x*1/x) = t or t(^1/x^2)=t. C.t is common of an equation so power of t's is equal 1/x^2=1 D.x^2=1 x=+/-1. So x=+1 is solution.
@Christopher-e7o
@Christopher-e7o 13 күн бұрын
X,2×+5=8
@Mathsandolympiad
@Mathsandolympiad 9 күн бұрын
Thanks for watching
@9990010
@9990010 13 күн бұрын
Super easy but nice presentation.
@Mathsandolympiad
@Mathsandolympiad 12 күн бұрын
Thanks for watching
@yurenchu
@yurenchu 14 күн бұрын
Note that x = 5^(1/5) is not a solution to the infinite "power tower" equation x^x^x^x^x^... = 5 (You'd think that the "5" in the exponent on the lefthandside can be recursively subtituted by x^x^x^5 _ad infinitum_ ; but no, that's not valid.)
@yurenchu
@yurenchu 14 күн бұрын
From the thumbnail: Just from inspection, x = 5^(1/5) = ⁵√5 ≈ 1.3797296615 appears to be a solution. (Not sure if it's the only solution, though.)
@sy8146
@sy8146 14 күн бұрын
Thank you for explaining. I think there is another solution. It is (a, b)=(1, 18) . Actually, 18^(√1) - 1^(√18) = 18 - 1 = 17 .
@Mathsandolympiad
@Mathsandolympiad 14 күн бұрын
Thanks for the feedback! It's always great to see different approaches.
@yurenchu
@yurenchu 14 күн бұрын
√(9 + √(64 + 16√12)) = = √(9 + 4√(4 + √12)) = √(9 + 4√(4 + 2√3)) = √(9 + 4√( 3 + 1 + 2√3 )) = √(9 + 4√( (√3 + 1)² )) = √( 9 + 4(√3 + 1) ) = √( 9 + 4√3 + 4 ) = √( 13 + 4√3 ) = √( 13 + 2√12 ) = √( 12 + 1 + 2√12 ) = √( (√12 + 1)² ) = (√12 + 1) = 2√3 + 1 ≈ 4.46410
@yurenchu
@yurenchu 14 күн бұрын
Answer: 49/111 Calculation: a³ + b³ = 10 [eq. 1] a + b = 7 [eq. 2] Find 1/a + 1/b . Use the identity a³ + b³ = (a+b)(a² - ab + b²) ... substitute using eq. 1 and 2 ... 10 = 7*(a² - ab + b²) a² - ab + b² = 10/7 [eq. 3] Furthermore, from eq. 2 : (a+b)² = 7² a² + 2ab + b² = 49 ... subtract eq. 3 ... (a² + 2ab + b²) - (a² - ab + b²) = 49 - 10/7 3ab = 343/7 - 10/7 3ab = 333/7 ab = 111/7 [eq. 4] Now, 1/a + 1/b = = b/(ab) + a/(ab) = (a+b)/(ab) ... substitute using eq. 2 and eq. 4 ... = 7 / (111/7) = 49/111
@yurenchu
@yurenchu 15 күн бұрын
Solve for integers m and n , given ³√( 6√45 - 17 ) = m/(√n + 1) Lefthandside: ³√( 6√45 - 17 ) = = ³√( (48√45 - 136) / 8 ) = ³√( (45√45 + 3√45 - 135 - 1) / 2³ ) = ³√( (45√45 - 3*45 + 3√45 - 1) / 2³ ) = ³√( (√45 - 1)³ / 2³ ) = ³√( [ (√45 - 1)/2 ]³ ) = (√45 - 1)/2 Righthandside: m/(√n + 1) = ... multiply numerator and denominator by (√n - 1) ... = [ m*(√n - 1) ] / [ (√n + 1)*(√n - 1) ] = [ m*(√n - 1) ] / (n - 1) = (√n - 1) * m/(n-1) Equating LHS and RHS: (√45 - 1)/2 = (√n - 1) * m/(n-1) (√45 - 1) * 1/2 = (√n - 1) * m/(n-1) ... set n = 45 ... 1/2 = m/(45 - 1) 1/2 = m/44 m = 44*(1/2) = 22 ==> n = 45 , m = 22
@Mathsandolympiad
@Mathsandolympiad 14 күн бұрын
Thanks for watching
@yurenchu
@yurenchu 15 күн бұрын
⁴√(89 + 28√10) = = ⁴√(25 + 60 + 4 + 20√10 + 8√10) = ⁴√(25 + 20√10 + 60 + 8√10 + 4) = ⁴√(25 + 20(√5)(√2) + 60 + 8(√5)(√2) + 4) = ⁴√(25 + 4*5*(√5)(√2) + 6*10 + 4*2*(√5)(√2) + 4) = ⁴√(5² + 4*5*(√5)(√2) + 6*5*2 + 4*2*(√5)(√2) + 2²) ... Note: 5 = (√5)² , 2 = (√2)² ... = ⁴√( ((√5)²)² + 4*((√5)²)*(√5)(√2) + 6*((√5)²)*((√2)²) + 4*((√2)²)*(√5)(√2) + ((√2)²)²) = ⁴√( (√5)⁴ + 4*((√5)³)*(√2) + 6*((√5)²)*((√2)²) + 4*(√5)*((√2)³) + (√2)⁴ ) = ⁴√( (√5 + √2)⁴ ) = (√5 + √2) Alternative derivation: ⁴√(89 + 28√10) = = ⁴√( 49 + 40 + 2*14√10 ) = ⁴√( 49 + 2*7*2√10 + 40 ) = ⁴√( 7² + 2*7*2√10 + (2√10)² ) = ⁴√( (7 + 2√10)² ) ... Note: 7 + 2√10 > 0 ... = √( 7 + 2√10 ) = √( 5 + 2 + 2√10 ) = √( 5 + 2√10 + 2 ) = √( (√5)² + 2(√5)(√2) + (√2)² ) = √( (√5 + √2)² ) = (√5 + √2)
@renesperb
@renesperb 15 күн бұрын
A different way: write the equation as a^4=c^4*(2^(3/2))^4 and c is a solution of c^4= -1 ,that is 1/√2 (± 1 ± i) , all 4 possible choices. Hence , a= c* 2^(3/2). We can now simplify : 2^(3/2) /√2 = 2 ,so that we have finally 2*(± 1± i) as final result.
@Mathsandolympiad
@Mathsandolympiad 15 күн бұрын
Thanks for watching!
@mori1bund
@mori1bund 16 күн бұрын
Nice! :)
@Mathsandolympiad
@Mathsandolympiad 14 күн бұрын
Thanks for watching!
@AbhishekYadav-lw7eh
@AbhishekYadav-lw7eh 16 күн бұрын
I use substitution method as it was easy. Answer is 4 and 9
@Mathsandolympiad
@Mathsandolympiad 16 күн бұрын
Hey - thanks for watching !
@ThoaPhạm-o5m
@ThoaPhạm-o5m 16 күн бұрын
perfect equations in your method
@Mathsandolympiad
@Mathsandolympiad 16 күн бұрын
Glad you like them! Keep watching!
@yurenchu
@yurenchu 16 күн бұрын
m = ᵐ√( 2^(√200) ) Assume m is real, and both sides are positive (note that for any real value of m, the righthandside cannot be non-positive anyway); then we can take the natural logarithm at both sides. ln(m) = ln( ᵐ√( 2^(√200) ) ) ln(m) = (1/m) * ln( 2^(√200) ) ln(m) = (1/m) * (√200) * ln( 2 ) m * ln(m) = (10√2) * ln(2) e^(ln(m)) * ln(m) = (10√2) * ln(2) Note that RHS here is positive ; hence there is one real (and positive) solution ln(m) = W₀( (10√2)*ln(2) ) , where W₀ is the 0'th branch of the Lambert W function. But we can derive a more convenient way to write the solution: e^(ln(m)) * ln(m) = (20√2) * (½) * ln(2) e^(ln(m)) * ln(m) = (20√2) * ln(√2) e^(ln(m)) * ln(m) = (4√2) * 5 * ln(√2) e^(ln(m)) * ln(m) = (4√2) * ln( (√2)⁵ ) e^(ln(m)) * ln(m) = (4√2) * ln( 4√2 ) e^(ln(m)) * ln(m) = e^(ln(4√2)) * ln(4√2) ln(m) = ln(4√2) m = 4√2
@9990010
@9990010 21 күн бұрын
Thats a very neat one!
@Mathsandolympiad
@Mathsandolympiad 16 күн бұрын
Thanks for watching
@gamenos3815
@gamenos3815 22 күн бұрын
1 + 2√3
@Blin.gde.moy.stariy.nik.
@Blin.gde.moy.stariy.nik. 23 күн бұрын
I think you're underrated Maybe you should change something ?
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Hey thanks for noticing! Do you suggest anything ?
@Blin.gde.moy.stariy.nik.
@Blin.gde.moy.stariy.nik. 23 күн бұрын
​@@Mathsandolympiad No , I don't think I can , don't know much about editing or KZbin But I like what you're doing Hope you'll get popular
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thank you for your kind words! I am humbled. Please help me in sharing my channel and videos to your friends and family!! Much love!
@PriyaSachdeva-g9i
@PriyaSachdeva-g9i 23 күн бұрын
wow🤠 Never knew math's could be this easy!
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thank you for watching!!
@shilpisinha175
@shilpisinha175 23 күн бұрын
👏
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thank you for watching!
@leodubocs5447
@leodubocs5447 24 күн бұрын
The claim that a^a = b^b is false in general. If you study the function f which maps x to x^x, you will see that it is first decreasing between 0 and e^(-1), then increasing afterwards. The conclusion is correct in our particular case, because f(x)<= 1 on the "non-injective" part [0, e^(-1)], whereas sqrt(32)>1.
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thanks for watching !
@jidehuyghe4051
@jidehuyghe4051 25 күн бұрын
Original et excellent !
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thank you for your words of encouragement! Do like subscribe and share
@JobsAlert-c1y
@JobsAlert-c1y 25 күн бұрын
👌
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thanks for watching!
@renesperb
@renesperb 25 күн бұрын
There is a different way: Take ln ,then you have ln m =1/m*ln a, with a= ln2*√200. If you set m= e^t then it follows that t* e^t = ln a ,which means that t = W[ln a] ,W = Lambert function. Hence m= e^(W[ln a] = 4*√2 .Of course , if the Lambert function is not known , then this solution cannot be found. Also ,the last step is not so easy to see.
@Mathsandolympiad
@Mathsandolympiad 25 күн бұрын
Thanks for the feedback
@luljetanocka9663
@luljetanocka9663 26 күн бұрын
This is from Albanian maths olympiade Proove that for any two arbitary numbers if you divide each of this numbers by their difference the remainder is the same but the quoation is 1 greater for example take numbers 4 and 3 3/(4-3) = 3 remainder 0 4(4-3) = 4 remainder 0
@Mathsandolympiad
@Mathsandolympiad 25 күн бұрын
Thanks for watching - will try this.
@luljetanocka9663
@luljetanocka9663 25 күн бұрын
Please tell me thw proof after you solve it.
@yurenchu
@yurenchu 16 күн бұрын
Let a and b be two arbitrary integers, and a < b . Then their absolute difference is (b-a) , and the division of a and b by their difference gives q1 = a/(b-a) q2 = b/(b-a) = (b-a+a)/(b-a) = (b-a)/(b-a) + a/(b-a) = 1 + a/(b-a) = 1 + q1 hence if q1 gives an integer quotient of, say, c with a remainder of r ( in other words: q1 = c + r/(b-a) ) , then q2 gives an integer quotient of 1+c with also a remainder of r ( in other words: q2 = 1+c + r/(b-a) ).
@JobsAlert-c1y
@JobsAlert-c1y 26 күн бұрын
Wow - thats amazing!
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thanks for watching
@aureusyarara
@aureusyarara 26 күн бұрын
oh this was pure beauty
@Mathsandolympiad
@Mathsandolympiad 26 күн бұрын
Thank you for your valuable feedback. Do like, subscribe and share. Keep watching :)
@roselanggin958
@roselanggin958 27 күн бұрын
Need more laws here. If line 2 to 3 is an equivalency , what happened between line 3 and line 4? Tom Foolery, me thinks. You made that up.
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thanks for watching
@roselanggin958
@roselanggin958 27 күн бұрын
I lose you on the line that starts with 4*4th.
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Keep watching to learn more
@Mr.pavan0
@Mr.pavan0 28 күн бұрын
😮😮
@Mathsandolympiad
@Mathsandolympiad 23 күн бұрын
Thanks for watching
@ЮлияКарпенко-ф3л
@ЮлияКарпенко-ф3л 28 күн бұрын
How about proof? Using the method of mathematical induction for example
@jidehuyghe4051
@jidehuyghe4051 29 күн бұрын
qui l 'eut cru !
@Mathsandolympiad
@Mathsandolympiad 29 күн бұрын
Thanks
@NicePIague
@NicePIague Ай бұрын
X=3 ez
@Mathsandolympiad
@Mathsandolympiad 29 күн бұрын
Correct
@oscaramorim7234
@oscaramorim7234 Ай бұрын
👍👍
@Mathsandolympiad
@Mathsandolympiad 29 күн бұрын
Thanks
@Funandlearn2024
@Funandlearn2024 Ай бұрын
This is cool
@Mathsandolympiad
@Mathsandolympiad Ай бұрын
Thanks
@NeetaGupta-z9g
@NeetaGupta-z9g Ай бұрын
Excellent!👌
@jidehuyghe4051
@jidehuyghe4051 Ай бұрын
Très futé : je n'y aurais pas pensé !!!
@Mathsandolympiad
@Mathsandolympiad Ай бұрын
Thank you! Keep watching :)
@Mr.pavan0
@Mr.pavan0 Ай бұрын
Sicenties ❤
@Mr.pavan0
@Mr.pavan0 Ай бұрын
Sicenties ❤