Hey thanks for pointing out - Its changed now. And thanks for watching :) Much appreciated.
@yurenchu10 күн бұрын
3ˣ - 3ʸ = 3 3ˣ⁺ʸ = 3 Substitute u = 3ˣ , v = 3ʸ . Note: since x and y are real, u and v must be real and positive. u - v = 3 uv = 3 u = 3/v ==> substitute into first equation 3/v - v = 3 3 - v² = 3v 3 = v² + 3v 3 + 9/4 = v² + 2(3/2)v + (3/2)² 21/4 = (v + 3/2)² v + 3/2 = ±√(21/4) v = -3/2 ± (1/2)√21 v = (-3 - √21)/2 OR v = (-3 + √21)/2 v = (-3 - √21)/2 < 0 ==> no real solution for (x,y) v = (-3 + √21)/2 > 0 ==> ... u - v = 3 ==> u = v+3 = v + 6/2 ... u = (3 + √21)/2 x = ln(u)/ln(3) = ln( (3 + √21)/2 )/ln(3) = [ ln(3 + √21) - ln(2) ]/ln(3) y = ln(v)/ln(3) = ln( (-3 + √21)/2 )/ln(3) = [ ln(-3 + √21) - ln(2) ]/ln(3)
@Mathsandolympiad8 күн бұрын
Thanks
@cyruschang190410 күн бұрын
log(√x) = 10^200 √x = 10^(10^200) x = 100^(10^200)
@Mathsandolympiad9 күн бұрын
Thanks for watching
@cyruschang19049 күн бұрын
@ Thank you
@ilyashick317810 күн бұрын
Just notice x>0 because of radical Steps: A.Raise to a power of 2 to simplify an equation. B.Introduce t = 25^2 C.it is nested radicals & can be to overwrite as t((^1/x)^1/x)=t or t^(1/x*1/x) = t or t(^1/x^2)=t. C.t is common of an equation so power of t's is equal 1/x^2=1 D.x^2=1 x=+/-1. So x=+1 is solution.
@Christopher-e7o13 күн бұрын
X,2×+5=8
@Mathsandolympiad9 күн бұрын
Thanks for watching
@999001013 күн бұрын
Super easy but nice presentation.
@Mathsandolympiad12 күн бұрын
Thanks for watching
@yurenchu14 күн бұрын
Note that x = 5^(1/5) is not a solution to the infinite "power tower" equation x^x^x^x^x^... = 5 (You'd think that the "5" in the exponent on the lefthandside can be recursively subtituted by x^x^x^5 _ad infinitum_ ; but no, that's not valid.)
@yurenchu14 күн бұрын
From the thumbnail: Just from inspection, x = 5^(1/5) = ⁵√5 ≈ 1.3797296615 appears to be a solution. (Not sure if it's the only solution, though.)
@sy814614 күн бұрын
Thank you for explaining. I think there is another solution. It is (a, b)=(1, 18) . Actually, 18^(√1) - 1^(√18) = 18 - 1 = 17 .
@Mathsandolympiad14 күн бұрын
Thanks for the feedback! It's always great to see different approaches.
A different way: write the equation as a^4=c^4*(2^(3/2))^4 and c is a solution of c^4= -1 ,that is 1/√2 (± 1 ± i) , all 4 possible choices. Hence , a= c* 2^(3/2). We can now simplify : 2^(3/2) /√2 = 2 ,so that we have finally 2*(± 1± i) as final result.
@Mathsandolympiad15 күн бұрын
Thanks for watching!
@mori1bund16 күн бұрын
Nice! :)
@Mathsandolympiad14 күн бұрын
Thanks for watching!
@AbhishekYadav-lw7eh16 күн бұрын
I use substitution method as it was easy. Answer is 4 and 9
@Mathsandolympiad16 күн бұрын
Hey - thanks for watching !
@ThoaPhạm-o5m16 күн бұрын
perfect equations in your method
@Mathsandolympiad16 күн бұрын
Glad you like them! Keep watching!
@yurenchu16 күн бұрын
m = ᵐ√( 2^(√200) ) Assume m is real, and both sides are positive (note that for any real value of m, the righthandside cannot be non-positive anyway); then we can take the natural logarithm at both sides. ln(m) = ln( ᵐ√( 2^(√200) ) ) ln(m) = (1/m) * ln( 2^(√200) ) ln(m) = (1/m) * (√200) * ln( 2 ) m * ln(m) = (10√2) * ln(2) e^(ln(m)) * ln(m) = (10√2) * ln(2) Note that RHS here is positive ; hence there is one real (and positive) solution ln(m) = W₀( (10√2)*ln(2) ) , where W₀ is the 0'th branch of the Lambert W function. But we can derive a more convenient way to write the solution: e^(ln(m)) * ln(m) = (20√2) * (½) * ln(2) e^(ln(m)) * ln(m) = (20√2) * ln(√2) e^(ln(m)) * ln(m) = (4√2) * 5 * ln(√2) e^(ln(m)) * ln(m) = (4√2) * ln( (√2)⁵ ) e^(ln(m)) * ln(m) = (4√2) * ln( 4√2 ) e^(ln(m)) * ln(m) = e^(ln(4√2)) * ln(4√2) ln(m) = ln(4√2) m = 4√2
@999001021 күн бұрын
Thats a very neat one!
@Mathsandolympiad16 күн бұрын
Thanks for watching
@gamenos381522 күн бұрын
1 + 2√3
@Blin.gde.moy.stariy.nik.23 күн бұрын
I think you're underrated Maybe you should change something ?
@Mathsandolympiad23 күн бұрын
Hey thanks for noticing! Do you suggest anything ?
@Blin.gde.moy.stariy.nik.23 күн бұрын
@@Mathsandolympiad No , I don't think I can , don't know much about editing or KZbin But I like what you're doing Hope you'll get popular
@Mathsandolympiad23 күн бұрын
Thank you for your kind words! I am humbled. Please help me in sharing my channel and videos to your friends and family!! Much love!
@PriyaSachdeva-g9i23 күн бұрын
wow🤠 Never knew math's could be this easy!
@Mathsandolympiad23 күн бұрын
Thank you for watching!!
@shilpisinha17523 күн бұрын
👏
@Mathsandolympiad23 күн бұрын
Thank you for watching!
@leodubocs544724 күн бұрын
The claim that a^a = b^b is false in general. If you study the function f which maps x to x^x, you will see that it is first decreasing between 0 and e^(-1), then increasing afterwards. The conclusion is correct in our particular case, because f(x)<= 1 on the "non-injective" part [0, e^(-1)], whereas sqrt(32)>1.
@Mathsandolympiad23 күн бұрын
Thanks for watching !
@jidehuyghe405125 күн бұрын
Original et excellent !
@Mathsandolympiad23 күн бұрын
Thank you for your words of encouragement! Do like subscribe and share
@JobsAlert-c1y25 күн бұрын
👌
@Mathsandolympiad23 күн бұрын
Thanks for watching!
@renesperb25 күн бұрын
There is a different way: Take ln ,then you have ln m =1/m*ln a, with a= ln2*√200. If you set m= e^t then it follows that t* e^t = ln a ,which means that t = W[ln a] ,W = Lambert function. Hence m= e^(W[ln a] = 4*√2 .Of course , if the Lambert function is not known , then this solution cannot be found. Also ,the last step is not so easy to see.
@Mathsandolympiad25 күн бұрын
Thanks for the feedback
@luljetanocka966326 күн бұрын
This is from Albanian maths olympiade Proove that for any two arbitary numbers if you divide each of this numbers by their difference the remainder is the same but the quoation is 1 greater for example take numbers 4 and 3 3/(4-3) = 3 remainder 0 4(4-3) = 4 remainder 0
@Mathsandolympiad25 күн бұрын
Thanks for watching - will try this.
@luljetanocka966325 күн бұрын
Please tell me thw proof after you solve it.
@yurenchu16 күн бұрын
Let a and b be two arbitrary integers, and a < b . Then their absolute difference is (b-a) , and the division of a and b by their difference gives q1 = a/(b-a) q2 = b/(b-a) = (b-a+a)/(b-a) = (b-a)/(b-a) + a/(b-a) = 1 + a/(b-a) = 1 + q1 hence if q1 gives an integer quotient of, say, c with a remainder of r ( in other words: q1 = c + r/(b-a) ) , then q2 gives an integer quotient of 1+c with also a remainder of r ( in other words: q2 = 1+c + r/(b-a) ).
@JobsAlert-c1y26 күн бұрын
Wow - thats amazing!
@Mathsandolympiad23 күн бұрын
Thanks for watching
@aureusyarara26 күн бұрын
oh this was pure beauty
@Mathsandolympiad26 күн бұрын
Thank you for your valuable feedback. Do like, subscribe and share. Keep watching :)
@roselanggin95827 күн бұрын
Need more laws here. If line 2 to 3 is an equivalency , what happened between line 3 and line 4? Tom Foolery, me thinks. You made that up.
@Mathsandolympiad23 күн бұрын
Thanks for watching
@roselanggin95827 күн бұрын
I lose you on the line that starts with 4*4th.
@Mathsandolympiad23 күн бұрын
Keep watching to learn more
@Mr.pavan028 күн бұрын
😮😮
@Mathsandolympiad23 күн бұрын
Thanks for watching
@ЮлияКарпенко-ф3л28 күн бұрын
How about proof? Using the method of mathematical induction for example