What changes if the inflow and outflow rates are different?
@luuksemmekrot450916 күн бұрын
Very helpful video thank you!
@EvarstiHitimana19 күн бұрын
Ntabwo byumvikana
@georgen975520 күн бұрын
Where lecturers cannot address vice presidents and presidents i wonder how such access is possible for lecturers such as me ......
@TonyTheShooter26 күн бұрын
Im mexican, and I had homework with this integral, I didnt find it everywhere until I found this channel, its a gold mine
@bonniem186528 күн бұрын
thank you!
@RawanDiaaYoussefАй бұрын
As a pharmacy student from Egypt u very benefit me thank u sir ❤
@plushiyitoАй бұрын
soo both final expressions are correct, but still by convention we use the positive one???
@user-youung.hyun26Ай бұрын
Oh my Jesus, thank you teacher Finally I understood what I have to do in nixing problem. I appreciate it.
@ethanluvisia8678Ай бұрын
This was amazing, thank you!
@chazadkins242 ай бұрын
Very helpful! Thank you greatly
@antoniocampos97212 ай бұрын
Thanks man....greetings from Brazil !
@umakako2 ай бұрын
Thank you!
@gelbkehlchen2 ай бұрын
Solution: ∫(4x+3)/(x²+1)*dx = 2*∫2x/(x²+1)*dx+3*∫1/(x²+1)*dx = -------------- Substitution for the first integral: u = x²+1 du = 2x*dx dx = du/(2x) -------------- = 2*∫2x/u*du/(2x)+3*∫1/(x²+1)*dx = 2*∫1/u*du+3*∫1/(x²+1)*dx = 2*ln|u|+3*arctan(x)+C = 2*ln|x²+1|+3*arctan(x)+C Checking the result by deriving: [2*ln|x²+1|+3*arctan(x)+C]’ = 2*1/(x²+1)*2x+3*1/(x²+1) = (4x+3)/(x²+1) Everything okay!
@livvielov2 ай бұрын
I picked the right u but took dv=sec^2x +1 and ended up with a right mess. Thanks for the proof
@Zxnoll-r4s2 ай бұрын
GOOD VIDEO
@egemenyaln2 ай бұрын
Amazing video 🎉
@jotisidhu63862 ай бұрын
Thanks a lot😊
@SreenidhiRamasahayam2 ай бұрын
Thankyou from India💖
@ashishraje57122 ай бұрын
Integral ln^2 (sin x) pls explain
@hamidmohaddes27742 ай бұрын
We can use lhopitalle rule
@TuyeniMeme2 ай бұрын
Hmm......this was very helpful I now understand something that previously took me around three hours to understand 😊
@RayanShaikh-bf1gp3 ай бұрын
gracias
@klozzy18513 ай бұрын
thank u!!!
@thedeathofbirth07633 ай бұрын
Master indeed! Thank you!
@thedeathofbirth07633 ай бұрын
Beautifully explained! Thank you! Can not wait for more videos from you. Please don't stop, you have too much to offer...
@thedeathofbirth07633 ай бұрын
Excellent communication skills! Thank you for the time you took to make this video!
@Kzaman-yg5br3 ай бұрын
6:50 can I apply L Hospital rules because it is now 0/0 form.
@dinofish32622 ай бұрын
U can do that but you would need to take the derivative of m and ln(1+m). The proof is using first principles, which means all the information u have is the limit definition and algebra.
@soured79673 ай бұрын
best explanation ever, tyvvvvm
@anasyounus87873 ай бұрын
Real
@derickmweembela42484 ай бұрын
Still can't get it 😢😢😢.
@derickmweembela42484 ай бұрын
I got it now. Simple 😊
@harshvardhanmisal22554 ай бұрын
I was solving a question and used th cos3x formula. I saw the answer and it was completely different than mine. Now, I have understood what they did. Thanks!
@yr98294 ай бұрын
What the fucj
@RahinatuUmarAdamu4 ай бұрын
This method is the best
@NumbToons4 ай бұрын
What a beautiful video and presentation
@saravanarajeswaran26264 ай бұрын
on the other side , any function say a^x , the derivative would become a^x times limit as h approaches 0 of a^h - 1/h , which gives some random irrational number (which ln a) , so we would ask , so is there any number ,so that we take derivative the limit becomes 0, yes that is e , so most likely it is one of e definition you can say from another persepective
@AsmaMirza-kr2hm5 ай бұрын
Thank you teacher ❤
@fsponj5 ай бұрын
I always wondered why lim h→0 (aʰ-1)/h = ln a Thanks for explaining it
@extryxd10255 ай бұрын
Thank you! You helped me a lot!
@scientist23wannabe_235 ай бұрын
I do it with lim[(lnx-lnx0)/x-x0] x->x0. becomes limln(x/x0)/(x-x0) x->x0 Then i pose u=x/x0 and the limits becomes lim lnu/[x0(1-u)] that lim(lnu)/(u-1)=1 using N-L theorem and squezze theorem u->1
@LakshayKhatkar-ev8hw5 ай бұрын
Sir this lecture was osm ❤ I am preparing for jee advance and i want you to solve such problems ❤ love from india