13:30 You should explain how this matrix was obtained. Why doesn’t anyone explain it?
@王海旭-y1k5 ай бұрын
hello,I argue that the title of this video should be Cech-Cohomology of Topological Space 😊
@myuhan48556 ай бұрын
循循善诱,受益匪浅,🙏感谢杜老师。
@ompatel90176 ай бұрын
No way bruh 🥶🥶🫡
@dhruvsidana56696 ай бұрын
Hi, Will you upload more lectures?
@王海旭-y1k7 ай бұрын
When will the next video be updated?❤
@王海旭-y1k7 ай бұрын
When can we expect the next video to drop
@王海旭-y1k7 ай бұрын
Tu's teaching is incredibly articulate! I can't wait for the next video❤
@Nanno8437 ай бұрын
Sir please make video on complex number for JEE Advanced ❤
@王海旭-y1k7 ай бұрын
When will the next video update? I can't wait to watch it😂
@popping1483 Жыл бұрын
it s a good lesson but in the multiplicative schwarz method idk why no one explain how they obtained the matrix form of the schwar multiplicative methode
@alessandrocicalese27332 жыл бұрын
Great Lesson! So Clear, thank you 😃
@科隆杂谈2 жыл бұрын
有不少讯息以后会关注的
@bideshsengupta94553 жыл бұрын
Thank you
@bideshsengupta94553 жыл бұрын
Thank you.
@bideshsengupta94553 жыл бұрын
Thank you.
@bideshsengupta94553 жыл бұрын
Thank you
@bideshsengupta94553 жыл бұрын
Thank you
@mephisknowfeles3 жыл бұрын
omg fix the audio pleeeeaaasseeeee!!!
@hdbrot4 жыл бұрын
LOL, from 42:00 on it goes something like this: Professor: How are these group actions different? Student: The one on the right has fixpoints. Professor: Yeah..., but you know, that’s not the real reason. You see, it’s because the left one is free and the other isn’t, because notice: at the pole there is obviously a fixpoint!
@paul_tee3 жыл бұрын
Lol I also always confuse the definitions of free and faithful actions
@hdbrot3 жыл бұрын
@@paul_tee For me somehow the slogan „free is fixpoint-free“ works quite well, so gx = x implies g = 1 for any g, x. Then faithful is „just the other thing“. (But I must confess: due to not working with group actions so much currently I checked again in Wikipedia - just to be sure...)
@paul_tee3 жыл бұрын
@@hdbrot actually that's really good, I'm stealing that from you
@YY-wu7et2 жыл бұрын
@@hdbrot "free is fixpoint-free" Not true. An action can be non-free even without any fixed points. That's why the professor said it's not the real reason.
@hdbrot2 жыл бұрын
@@YY-wu7et An action can be non-free even if it has no point that is fixed by all group elements. In my earlier comment I meant a fixpoint of a single non-identity element. But I admit that it is the latter what is usually called a fixpoint, so I correct my mnemonic to “free is hereditarily fixpoint-free“ meaning that no action induced by a non-trivial subgroup has any fixpoints.