Preparing data for Biogeme 3.2.11
16:00
Multivariate Extreme Value Models
13:52
Panel data: dynamic model
4:15
3 жыл бұрын
Panel data: serial correlation
14:11
3 жыл бұрын
Panel data: static model
11:08
3 жыл бұрын
Mixture models: summary
4:34
3 жыл бұрын
Mixture models: latent classes
20:38
3 жыл бұрын
Mixture models: taste heterogeneity
14:56
Mixture models: nesting structures
18:36
Monte-Carlo integration (part 2)
12:19
Monte-Carlo integration (part 1)
17:17
Mixtures: introduction
13:57
3 жыл бұрын
Sampling strategies: an example
13:41
Sampling strategies
22:51
3 жыл бұрын
Пікірлер
@ikrambddd
@ikrambddd 18 сағат бұрын
merci monsieur
@mehdikhfifi7684
@mehdikhfifi7684 6 күн бұрын
un vrai crack
@arjunpukale3310
@arjunpukale3310 8 күн бұрын
Finally understood the weak duality theorem after endless YT videos
@andykandolf1948
@andykandolf1948 22 күн бұрын
great playlist, concise and didactically valuable! thx :-))
@__amkhrjee__
@__amkhrjee__ 27 күн бұрын
Extremely well made video! It'd be nice if you make a tutorial on how to make those nice plots.
@QinyuChen
@QinyuChen Ай бұрын
Amazing vedio, my English not very well, but still can get ur meaning quickly.
@vishnujatav6329
@vishnujatav6329 2 ай бұрын
Interesting
@m33pr0r
@m33pr0r 2 ай бұрын
Extremely good explanation thank you
@AyanAli-se5fl
@AyanAli-se5fl 2 ай бұрын
Summarised my professors 3 hours class in 10 minutes! Thank you for such a simple explanation!
@janushuang8587
@janushuang8587 2 ай бұрын
It's very clear. Very helpful!
@esaufloresvillar5689
@esaufloresvillar5689 2 ай бұрын
please the code
@musiclover-ik5jf
@musiclover-ik5jf 3 ай бұрын
🙏
@yiranchang136
@yiranchang136 4 ай бұрын
so clear! thank you very much! you solved my problems!
@tsunningwah3471
@tsunningwah3471 4 ай бұрын
90😅😊
@tsunningwah3471
@tsunningwah3471 4 ай бұрын
和樂 自殺
@structurelearninghub3340
@structurelearninghub3340 4 ай бұрын
Is this similar to lemke pivotal method?
@daffodilzworld3052
@daffodilzworld3052 5 ай бұрын
In context what does pdf mean ?
@vivekpetrolhead
@vivekpetrolhead 5 ай бұрын
Suscribed. Your channel is a gold mine. Concise and easy to follow. Thank you so much for your work.
@刘川-t5u
@刘川-t5u 5 ай бұрын
Professor,I have a question. The reduced cost is based on the dN=ej. When computing the reduced cost regarding the basic variable, I think the dN=0. Does it still apply?
@lifecat8452
@lifecat8452 5 ай бұрын
Thanks a lot ! I have a question that I hope you can answer. We have obtained the position where ℎ(𝑥∗)achieves its minimum value, that is, when 𝑥=𝑥∗ ,ℎ(𝑥) reaches its minimum. When I set 𝑥∗ = 𝑥𝑘 + 𝛼𝑑𝑘 to find the step size, is it possible for 𝛼 to fall outside the range[0,1]?
@tobiassugandi
@tobiassugandi 5 ай бұрын
What an awesome lecture, the examples are very helpful!
@briceathey2744
@briceathey2744 6 ай бұрын
vive la suisse !
@sharshabillian
@sharshabillian 6 ай бұрын
Many thanks for taking the time to share your knowledge so articulately.
@pnachtwey
@pnachtwey 6 ай бұрын
I would like to see a real example. In my case the line search begins from the current point in the opposite direction of the gradient. I must search along the line. I can just repeatably iterate along the line and evaluate the cost function until it no longer gets smaller. You are suggesting searching between two points but how far should the end point or 'low" point be from the current "high" point. You are assuming the boundary of the end point is known and will bracket the minimum point along the line search. What if it isn't?
@evstigneevnm
@evstigneevnm 7 ай бұрын
Dear sir, Thank you for your series. I was doing some research in the field of trust region updates and found you video series. I have a question on this video, though. Let's say we are working in reals. By definition, a positive definite matrix is a SYMMETRIC matrix M \in R^N \times R^N s.t. x*Mx >0 \forall x \in R^N and ||x||>0. At 04:04 it is said, that the matrix D_k = inv(A + \tau I) and \tau \in R is such, that D_k is positive definite. Am I correct that such method will not work if A is not symmetric? Is there a remedy for that case? I know about using a diagonal or symmetrization of the matrix (M = 1/2(A+A*)). But are there any other good suggestions, apart from trust region type methods, especially if the Newton's method is applied to find a solution to the problem F(x) = 0, not the minimization problem? Thank you for your time in advance.
@miqomargaryan15
@miqomargaryan15 7 ай бұрын
kroasan
@Abu_khalid1
@Abu_khalid1 7 ай бұрын
Thank you Sir
@arminmakani7471
@arminmakani7471 7 ай бұрын
I appreciate you deeply due to your amazing teaching.
@arminmakani7471
@arminmakani7471 7 ай бұрын
great
@arminmakani7471
@arminmakani7471 7 ай бұрын
Wooooooooooooooooooooow. Dear Professor, your explanations are brilliant and helpful. I also downloaded your book. Thank you so much for your services.
@gobichai2704
@gobichai2704 8 ай бұрын
you saved my life!
@avk8477
@avk8477 8 ай бұрын
Extremely concise and lucid explanation. Thank you Prof. Michel.
@friegglb3846
@friegglb3846 8 ай бұрын
Dear Prof, is there any reason we set the upper bound for the nest parameter as 10?
@achrafBadiry
@achrafBadiry 8 ай бұрын
love the french accent. cheers !
@TauvicRitter
@TauvicRitter 8 ай бұрын
Don't understand customer behaviour. Customers dont go to a bar when it is closed. And i guess just leave when service takes too long.
@mircosoffritti6484
@mircosoffritti6484 8 ай бұрын
Cristal clear
@NeoxX317
@NeoxX317 9 ай бұрын
Vous êtes une référence à mes yeux ! Je connais votre chaîne depuis la fac et désormais je travaille dans un projet autour de la MDA / MDO et vos vidéos sont d’une grande aide, merci !
@amareyaekob3343
@amareyaekob3343 9 ай бұрын
Dear Michel, Thank you so much for this insightful video. Can you make a video demonstrating choice modeling with latent variables in SPSS, Stata or other softwares? That would help us figure out how to integrate SEM with discrete choice modeling in the form of Structural choice modeling. Thank you so much again
@nayeemislam8123
@nayeemislam8123 9 ай бұрын
The video Survival of the fittest is not available on KZbin anymore.
@hannukoistinen5329
@hannukoistinen5329 9 ай бұрын
Well...math is not the strongest area of the French:). Wines and good food maybe.
@AkablaaTribe
@AkablaaTribe 9 ай бұрын
Dr. Bierlaire you are the best. I have been involved with SP studies for the past 34 years from Park and Ride , LRT , BRT , early or late start time ( peak spreading) , risk averse propensity at signalised junctions. having conducted over 30K SP surveys myself on the past 34 years I always have had questions and never found transparent answers concerning theory and estimation but you are a super start who explains leaving nothing un-answered. A Big Thanks
@ZenjobBuddyJensJeremies
@ZenjobBuddyJensJeremies 10 ай бұрын
Merci beaucoup !
@operitivo4635
@operitivo4635 10 ай бұрын
thank you for the tutorial!
@billalaslam-z7h
@billalaslam-z7h 10 ай бұрын
very good and intuitive explanation. Thank you so much sir! you make my learning a really wonderful experience
@SepsOfficial
@SepsOfficial 11 ай бұрын
Thankyou.
@SepsOfficial
@SepsOfficial 11 ай бұрын
Where is the part 3?
@StudyJuly
@StudyJuly 11 ай бұрын
Thank you so much. So well explained, exactly what I needed!
@minqixu-s5q
@minqixu-s5q 11 ай бұрын
Why I could not install biogeme through anaconda?
@mostafashafaati1828
@mostafashafaati1828 4 ай бұрын
I have the same problem
@raideno56
@raideno56 11 ай бұрын
Monsieur a 2:38 nous avions les couts reduits de c6 = -1.25 et celui de c5 = -0.75, c'etait pas plus interessant de choisir c6 comme variable entrante vu qu'elle diminuera la fonction objectif plus que c5 ? Merci.
@raideno56
@raideno56 11 ай бұрын
Hey please at 3:27 i didn't understand why N * dn is the same thing as the SUM of (Aj * dj) with j from m + 1 to n
@ytenergy444
@ytenergy444 10 ай бұрын
N is mx(n-m) matrix; d_N is a (n-m) column vector hence their product is a (m) column vector. Now you can see the resulting (m) dimensional column vector as expressed by a linear combination of the columns of N where the coefficients of the linear combinations are the entries of d_N, which are the d_j in the summation. The columns of N, are indicated as A_j with j going from m+1 to n (remember that N is the part of A that is not B where B is (mxm)) and the entries of d_N are indicated as d_j (these are numbers). In the example, the idea is to choose only one non basic variable and to set it to 1, which is the k-th one. For this reason, the summation boils down to just the extraction of the k-th column of A. Hope this helps!