Data Science Infinity | Overview
3:00
Calculating Loss MADE EASY [4/11]
19:31
Weights & Biases MADE EASY [2/11]
17:16
One Sample T-Test MADE EASY [8/13]
13:48
Пікірлер
@shwetankshekhar7640
@shwetankshekhar7640 7 сағат бұрын
Amazing, thanks !! First time really understanding the y=mx+c by visualising
@Bolinas
@Bolinas 4 күн бұрын
Input Layer = Unit, not a neuron. Neuron = Node Weights are added to the edge, before they reach the node in the hidden layer.
@golamkabir99
@golamkabir99 9 күн бұрын
awesome explanation - thanks - keep posting
@user-yz7mp4jn6o
@user-yz7mp4jn6o Ай бұрын
Hi, great video! I have a question. By the theorem, if we take a large enough amount of samples, from which we take the mean, then the mean distribution approximates the normal distribution... But, what about the size of each of those samples? Is there any theory about a "good" size for each sample? In the video you chose 40, and then 14 for the bootstramping. Could we have chosen a size of 1? :) Thank you!!!
@JasonRichDarmawan
@JasonRichDarmawan Ай бұрын
This deserve more recognition
@Meuthyayu
@Meuthyayu Ай бұрын
You just explained half of my semester in half a minute, amazing!
@samratsudeepchoudhary256
@samratsudeepchoudhary256 2 ай бұрын
11 & 12?
@AndreaJamison-n4c
@AndreaJamison-n4c 2 ай бұрын
Good job 👏
@neonfinix2337
@neonfinix2337 2 ай бұрын
This is false. This is discrete uniform distribution. Bernoulli's distribution is like tossing a coin.
@xyzanonymous9971
@xyzanonymous9971 2 ай бұрын
W
@nouridib9207
@nouridib9207 3 ай бұрын
Finally understood how biases fit in the overall setup of neural networks - Thanks
@sheldonb1533
@sheldonb1533 4 ай бұрын
good
@senthilmuruganr234
@senthilmuruganr234 5 ай бұрын
nice
@senthilmuruganr234
@senthilmuruganr234 5 ай бұрын
Nice explanation
@Churchill250267
@Churchill250267 5 ай бұрын
Python is for fuqwits who can't learn C++.
@andrew-jones-data-science
@andrew-jones-data-science 5 ай бұрын
Join 1000+ on the AWS course: bit.ly/aws-data-science-analytics
@andrew-jones-data-science
@andrew-jones-data-science 5 ай бұрын
Join 1000+ on the AWS course: bit.ly/aws-data-science-analytics
@andrew-jones-data-science
@andrew-jones-data-science 5 ай бұрын
Join 1000+ on the AWS course: bit.ly/aws-data-science-analytics
@andrew-jones-data-science
@andrew-jones-data-science 5 ай бұрын
Join 1000+ on the AWS course: bit.ly/aws-data-science-analytics
@nickharrison355
@nickharrison355 5 ай бұрын
Thanks Andrew. That was nice and easy to follow, like all the videos in this series. Great examples to show what's going on.
@gistend1423
@gistend1423 6 ай бұрын
Just found you.. How do I get this please?
@jarnailgill179
@jarnailgill179 6 ай бұрын
Awesome content
@ShashankSinghal1029
@ShashankSinghal1029 9 ай бұрын
Did this stop at 11 out of 13 ??
@SweetAlexMore
@SweetAlexMore 10 ай бұрын
Videos deserve more views 👏🏻
@Zixtys
@Zixtys 10 ай бұрын
Where do bias come from?
@vickieab
@vickieab 5 ай бұрын
the bias is also a random value in the algorithm parameter that you initialize before training.
@Rick88888888
@Rick88888888 10 ай бұрын
Where is the next tutorial "5/11" etc. ??? Tutorials 5/11 to 11/11 are all missing on your channel!
@Rick88888888
@Rick88888888 10 ай бұрын
Very well explained. I intend to follow your entire course.
@AnonymousGirl072
@AnonymousGirl072 11 ай бұрын
🤮🤮
@exzorttt
@exzorttt 11 ай бұрын
how to code it?
@TheRealDanNguyen
@TheRealDanNguyen 9 ай бұрын
def binary_crossentropy(y_true, y_pred): epsilon = 1e-15 y_pred = np.clip(y_pred, epsilon, 1 - epsilon) # To avoid log(0) error return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)) class SGD: def __init__(self, learning_rate=0.01): self.learning_rate = learning_rate def update(self, weights, gradients): return weights - self.learning_rate * gradients def accuracy(y_true, y_pred): predictions = np.round(y_pred) # Convert probabilities to binary predictions (0 or 1) return np.mean(predictions == y_true) for epoch in range(num_epochs): for x_batch, y_batch in data_loader: # Assuming data_loader yields batches of data # Forward pass y_pred = model.forward(x_batch) # Compute loss loss = binary_crossentropy(y_batch, y_pred) # Backward pass (compute gradients) gradients = model.backward(y_batch, y_pred) # Update weights optimizer.update(model.weights, gradients) # Compute accuracy acc = accuracy(y_batch, y_pred) # Print or log the loss and accuracy print(f"Epoch {epoch}, Loss: {loss}, Accuracy: {acc}") # or using tensorflow/keras for dog and cat model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # or using tensorflow/keras for dog, cat, and cow model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
@kevinolome8852
@kevinolome8852 11 ай бұрын
nice Tableau Training
@priyanshsharma1744
@priyanshsharma1744 11 ай бұрын
You're AMAZING!!! waiting for the rest of the videos
@iancockcroft9427
@iancockcroft9427 Жыл бұрын
Lewis Hamilton is a cricketer??
@juank2599
@juank2599 Жыл бұрын
Hey Andrew I would like to know on which platform you document projects with code?
@testofbeings
@testofbeings Жыл бұрын
Finally reached the end of the Statistics series but found there are 2 more to come T_T. Hopefully soon
@somcana
@somcana Жыл бұрын
Awesome indeed!
@lohitkattimani7668
@lohitkattimani7668 Жыл бұрын
very helpfull and easy to understand thanks 😊😊😊
@mohammedmaheer4740
@mohammedmaheer4740 Жыл бұрын
Many thanks to make it easy
@andrew-jones-data-science
@andrew-jones-data-science Жыл бұрын
Most welcome 😊
@husseinel-zein6849
@husseinel-zein6849 Жыл бұрын
I wrote these notes for me but thought they'd be useful for you guys too: 1. SQL 1:11 1. Query Foundations 2. Merging & Joining 3. Manipulation 2. Python 2:10 1. Base Python 2. Pandas 3. Numpy 4. Scipy 5. Matplotlib 6. Scikit-learn 7. Streamlit 3. Machine Learning 3:28 1. Supervised 1. Linear Regression 2. Logistic Regression 3. Decision Trees 4. Random Forests 5. K-Nearest Neighbors 2. Unsupervised 1. K-Means- used for clustering & segmentations 2. Principle Component Analysis (PCA) 3. Bonus 1. Association Rule Learning- Strength of relationships between data points. i.e. Which products are commonly bought together 2. Causal Impact Analysis- Measures change in a metric after some event has taken place 4. Deep Learning- Important to grow in career 5:20 1. Either Keras or PyTorch 5. Math + Stats 5:33 1. Math concepts: 1. Types of Data 2. Distributions 3. Basic Linear Algebra 2. Stats concepts: 1. Hypothesis tests 2. p-value 3. Sampling & CLT 4. Confidence intervals 6. Projects & Portfolios- Ranges from coding simple algorithms to coding big ML algorithms 6:53 1. Varied Portfolio 2. Easy for hiring manager to see value 3.NOTE: Stand out by exhibiting growth mindset 7. Tableau 9:00 1. Importing data & understanding data roles 2. Customization- Marks Card 3. Applying filters 4. Calculated fields 5. L.O.D Expressions 8. Github 9:40 1. Repositories 2. Branches 3. Pull Requests 4. Merges 5. Pull & Push between github & local machine # Consistency Is Key
@Manchester1066
@Manchester1066 Жыл бұрын
This is extremely useful and it is truly appreciated that you shared this. I have C/C+=/Java/SQL experience at enterprise level. That said I need to upgrade my skills. I was looking for a roadmap on where to start and this is gold for me. By the way, I’m watching your videos on Artificial Neural Networks and they are extremely well done. Thank you Mike
@harryhindsight9845
@harryhindsight9845 Жыл бұрын
love it
@andrew-jones-data-science
@andrew-jones-data-science Жыл бұрын
Glad you enjoyed it!
@silverlining7778
@silverlining7778 Жыл бұрын
I was looking for a data science roadmap and luckily I found this video. Thankyou @Andrew Jones for this super streight forward roadmap
@andrew-jones-data-science
@andrew-jones-data-science Жыл бұрын
You're very welcome - did you check out the longer session linked in the video notes too?
@priyanshurai9714
@priyanshurai9714 Жыл бұрын
@kareemabdullahi4489
@kareemabdullahi4489 Жыл бұрын
Really great content. But I'd like to ask why is it Ai&data science not just data science
@andrew-jones-data-science
@andrew-jones-data-science Жыл бұрын
AI and the areas within it (Machine Learning & Deep Learning etc) are a big part of what Data Scientists apply - so thought I should include it. Many roles have also now been labelled as “AI” roles too, so wanted to make the video relevant to those
@abdulsamad3388
@abdulsamad3388 Жыл бұрын
L do
@Dansingh-paraste.750
@Dansingh-paraste.750 Жыл бұрын
​@andrew-jones-daqqata-science
@SantoshKumar-io6vz
@SantoshKumar-io6vz Жыл бұрын
​@@andrew-jones-data-science,
@RavibhabarBhabarravi
@RavibhabarBhabarravi Жыл бұрын
@obehiokojie4066
@obehiokojie4066 Жыл бұрын
Great video! Thanks.
@andrew-jones-data-science
@andrew-jones-data-science Жыл бұрын
You're so welcome - thanks for your message!
@rajeev13chauhan
@rajeev13chauhan Жыл бұрын
Amazing summarisation of the entire process of learning.. thanks a ton
@andrew-jones-data-science
@andrew-jones-data-science Жыл бұрын
Glad you liked it!
@JPRealty-yb8yq
@JPRealty-yb8yq Жыл бұрын
Amazing to see how the complex looking process is seen to be so easy. Thanks for this, I really feel relieved. 🥰🥰
@andrew-jones-data-science
@andrew-jones-data-science Жыл бұрын
You’re welcome 😊
@anukumar9173
@anukumar9173 Жыл бұрын
Pl0plp00
@ehsanghavami6395
@ehsanghavami6395 Жыл бұрын
thank you for your explanations. just, was that standard deviation of 7 the sample standard deviation or the population standard deviation?
@shafiullahsyed4255
@shafiullahsyed4255 Жыл бұрын
I wish to enrolled into your course but i can't mange the money. Can you give me discount they will change my life
@robelhagos5503
@robelhagos5503 Жыл бұрын
Why is it when I move my date over I aways get a "Unable to complete action Internal Error - An unexpected error occurred and the operation could not be completed. Error Code: 6EA18A9E" Can someone help?