Really, really well done. If math was taught this way more people would take math courses.
@zoonpolitikon1648 Жыл бұрын
Why no comments?
@blairt81012 жыл бұрын
love your work thank you!
@maxpercer71192 жыл бұрын
you explained in an animation what took many pages (and books) to understand
@devanarayanababu19963 жыл бұрын
For the algo
@devanarayanababu19963 жыл бұрын
wow
@kshitijthakkar80743 жыл бұрын
Good work Otis 👍
@samariddinisomiddinov66783 жыл бұрын
Bravo!!!
@EDITsRRMDS3 жыл бұрын
Hey bro, thanks for comming for our place yesterday! Im subscribe!
@IITJAMAspirant3 жыл бұрын
Sir , your explanation is amazing and Unique ! Thank you
@feliciajocelyn39263 жыл бұрын
felt like going to hogwarts
@zaynjarallah3 жыл бұрын
What is the name of the program that you used in this animation? And How i can make the animation? Can you tell me please?
@abhisheksinghsengar69053 жыл бұрын
please make more videos on such theorems. Thank you so much.
@charleslyviz18183 жыл бұрын
Just from the step by step animation display I can feel the extraordinary patience the maker(s) put in it. Unbelievably clear trace of thought.
@mrhatman6753 жыл бұрын
This video is gold
@ranjumarkam49254 жыл бұрын
It was best Nd best video of maths in my life.....I loved it.....
@timkris15744 жыл бұрын
I’m still confused by the prof of closed. I understand B_r(x) is contained in the complement of K, but why we can claim the complement of K is opened? I think B_r(x) is just a small portion of the complement of K, right? Hope someone can correct me, thanks!
@amritlohia82403 жыл бұрын
It's effectively a proof by contradiction. We want to show that the complement of K is open (i.e. that K is closed), so we assume for contradiction that there is x in the complement of K such that no open ball B_r(x) is contained in the compliment of K.
@seandouglas75264 жыл бұрын
This is truly an amazing video! Clearest explanation of the C.B. Theorem I have seen. Thank you and hope to see you make more content. Subscribed.
@abhisheksinghsengar69054 жыл бұрын
woah !!
@stvdedal4 жыл бұрын
26:42 You select third cycle element in A as if it satisfied "x in A-g(B)", but the third cycle is in range of g(B)
@totoplopp66304 жыл бұрын
At 3:36 its C of n- 1, why is it n-1 and not +1?
@DP-sq7lw4 жыл бұрын
Simple yet beautiful proof! Thank you!
@pulkitnijhawan6534 жыл бұрын
awesome video..just wanted to let u know that u are changing the world for the better in a small way
@woodin_cardinal-48634 жыл бұрын
This is the best presentation I've seen of this classical result. Would love to see your take on some logic. Maybe try Gödel's incompleteness theorems or some independence results?
@yrstrulyrajan5664 жыл бұрын
How can I make such wonderful animations?
@Labroidas4 жыл бұрын
This video should have a lot more views than it does. Outstanding production quality, I would have never thought that I would find such a good video on this subject!
@trunalwandile46564 жыл бұрын
Phlus 🤣
@muhammadkhizertariq37794 жыл бұрын
Awesome video Very easy to understand
@isabelleanna25734 жыл бұрын
I like that approach. A great way of teaching mathematics !!!!
@wilsojtheblue28814 жыл бұрын
Cool video!
@cicihui65814 жыл бұрын
Thank you !
@closet01984 жыл бұрын
This helped my so much, thanks!
@tankesprang4 жыл бұрын
There is an error, I believe, in the "Quick Check" that the open ball B_r(x) is contained in the complement of K (at around 9:30). In the sentence "Moreover, because ... is contained in every other set in S, ...", the words "is contained by" should be replaced by "contains". Apart from that, excellent video.
@philipvuong73734 жыл бұрын
Thanks!
@schweinmachtbree10135 жыл бұрын
great video
@fakeaccount7025 жыл бұрын
Very well explained 🔥
@andrewp36465 жыл бұрын
I approve
@gdsfish32145 жыл бұрын
This video was simply amazing. One of the best math videos I've seen in my entire life to be honest.
@김민호수학연구소5 жыл бұрын
Amazing
@ivan88525 жыл бұрын
Поскольку в большей части литературы число ноль входит в набор натуральных чисел, следует рассмотреть следующие формулы, чтобы доказать биекцию между (N^2) и (N): 1) f(x,y)=(2^x)(2y+1)-1 ; 2) f(x,y)=((x+y)(x+y+1)\2)+x
@maryamjamali17395 жыл бұрын
It was all great . thank you. i just wish the narration was a little slower and it didn't have breaks while being animated. like a slower uncut visualization. anyways ,thanks a lot for the great work and huge amount of effort.
@mineshmandiaji5 жыл бұрын
Scared after watching this
@ritesharora60325 жыл бұрын
You should create more of this video's. Excellent stuff.. Thanks
@atabaymahmudov86845 жыл бұрын
That's great video,many thanks
@missghani86466 жыл бұрын
enjoyed this video and understood this funny proof thank you
@endlessduck16426 жыл бұрын
I understand it that way: a and b share the factor of 2, so the fraction can be reduced to a fraction c/d where c = a/2 and d = b/2. Applying the same proof for c and d though states that they also share the the factor 2. And continuing like that a and b have to share an infinte amount of the factor 2, which is not possible. Thus sqrt(2) must be irrational.
@miawong30246 жыл бұрын
Thank you!! Was having a hard time visualizing simply from the Johnsonbaugh book
@rubabzahber59906 жыл бұрын
This is a great video! Really appreciate the work that went behind this. If I may make one suggestion, it would be that instead of having a lot of animations, it would probably be better to have shorter animations between ideas, and less silent space. For example, from 23:03, there is an entire 15 seconds of silence while the animation plays out, which in my opinion breaks the attention of the student (especially if it is assumed that if a viewer has gotten this far into the video, would be familiar with the idea of an invective function.) In this specific case, having the arrows grow in parallel instead of sequentially might be better. However, I do understand that that might be more difficult to animate.
@ai_serf5 ай бұрын
i like the slowness. it helps give me time to understand.
@ehsansslman94366 жыл бұрын
THANK YOU VERY MUCH
@johnbensleylegiste25946 жыл бұрын
√(x1+x2)^2+(y1+y2)^2≤ √x1^2+x2^2 +√y1^2+y2^2please and how can i proove that please