a²(1-a)=5*5*6. So I expected that 1-a=6 and a²=25, then found a=-5. The rest is just a simple factorization.
@stpat76148 сағат бұрын
But what if x is not a whole number? Could there be a solution if 0 < x < 1?
@EnidWan9 сағат бұрын
a,b are the roots of the quadratic equation x²-9x+81=0. Solve the equation and get the values of a and b.
@bne14117 сағат бұрын
動画見たら14分、コメント欄見たら2秒で解決。便利な世の中になった笑
@gatchangatchan559317 сағат бұрын
The 2 you write is similar to 3. I tend to look at the screen without listening to the sound, I get confused between 2 and 3. The horizontal bar of 2 should be written straight.
@jamesharmon499422 сағат бұрын
Clearly, there is no more than one Real solution. (a+b)^2 = a^2 + b^2 + 2ab = 81 if ab = 81, then 2ab = 162. Subbing that in: a^2 + b^2 + 162 = 81 a^2 + b^2 = -81 In the real world, adding two squares always results in a positive sum. Therefore, at least one (if not both) of a and b are complex.
Такие "сложные" задачи решаются устно😂, пока Европа расписывает микрошаги😂
@KVDBHRZNSКүн бұрын
a=-5
@guyhoghton399Күн бұрын
Let _(t - √x)(t - √y) = 0_ ... ① ⇒ _t² - (√x + √y)t + √(xy) = 0_ ⇒ _t² - 10t + 10 = 0_ ⇒ _t = 5 ± √15_ ⇒ _( t - (5 + √15) )( t - (5 - √15) ) = 0_ ∴ by comparison with ①: _√x = 5 + √15, √y = 5 - √15_ up to symmetry ⇒ *_x = 40 + 10√15, y = 40 - 10√15_*
@stpat7614Күн бұрын
I did it a different and (unfortunately) longer way. sqrt(x) + sqrt(y) = 10 Since sqrt(x) >= 0, then x >= 0 Since sqrt(y) >= 0, then y >= 0 sqrt(xy) = 10 Since sqrt(xy) > 0, then x > 0 and y > 0 [sqrt(x) + sqrt(y)]^2 = 10^2 [sqrt(x)]^2 + [sqrt(y)]^2 + 2*sqrt(x)*sqrt(y) = 100 x + y + 2*sqrt(xy) = 100 x + y + 2*sqrt(xy) - x - y = 100 - x - y 2*sqrt(xy) = 100 - x - y 2*sqrt(xy)/2 = [100 - x - y]/2 sqrt(xy) = [100 - x - y]/2 [100 - x - y]/2 = sqrt(xy) Since sqrt(xy) = 10, then [100 - x - y]/2 = 10 [100 - x - y]/2*2 = 10*2 100 - x - y = 20 -[100 - x - y] = -20 x + y - 100 = -20 x + y - 100 - y + 100 = -20 - y + 100 x = 80 - y sqrt(x) + sqrt(y) = 10 sqrt(x) + sqrt(y) - sqrt(y) = 10 - sqrt(y) sqrt(x) = 10 - sqrt(y) [sqrt(x)]^2 = [10 - sqrt(y)]^2 x = 10^2 + [-sqrt(y)]^2 + 2*10*[-sqrt(y)] x = 100 + y - 20*sqrt(y) 100 + y - 20*sqrt(y) = x Since x = 80 - y, then 100 + y - 20*sqrt(y) = 80 - y 100 + y - 20*sqrt(y) - 80 + y = 80 - y - 80 + y 20 + 2y - 20*sqrt(y) = 0 2y - 20*sqrt(y) + 20 = 0 [2y - 20*sqrt(y) + 20]/2 = 0 / 2 y - 10*sqrt(y) + 10 = 0 Let u = sqrt(y), then y - 10*sqrt(y) + 10 = u^2 - 10u + 10 = 0 u = [-(-10) +/- sqrt([-10]^2 - 4*1*10)] / [2*1] u = [10 +/- sqrt(100 - 40)] / 2 u = [10 +/- sqrt(60)] / 2 u = [10 +/- sqrt(4*15)] / 2 u = [10 +/- 2*sqrt(15)] / 2 u = 5 +/- sqrt(15) u^2 = [5 +/- sqrt(15)]^2 u^2 = 5^2 + [+/- sqrt(15)]^2 + 2*5*[+/- sqrt(15)] u^2 = 25 + 15 +/- 10*sqrt(15) u^2 = 40 +/- 10*sqrt(15) Since u = sqrt(y), then u^2 = [sqrt(y)]^2 = 40 +/- 10*sqrt(15) y = 40 +/- 10*sqrt(15) y1 = 40 + 10*sqrt(15) and y2 = 40 - 10*sqrt(15) y1 > 0 and y2 > 0 Since x = 80 - y, then x1 = 80 - y1 and x2 = 80 - y2 x1 = 80 - [40 + 10*sqrt(15)] and x2 = 80 - [40 - 10*sqrt(15)] x1 = 80 - 40 - 10*sqrt(15) and x2 = 80 - 40 + 10*sqrt(15) x1 = 40 - 10*sqrt(15) and x2 = 40 + 10*sqrt(15) x1 > 0 and x2 > 0 { (x1, y1), (x2, y2) } = { (40 - 10*sqrt[15], 40 + 10*sqrt[15]), (40 + 10*sqrt[15], 40 - 10*sqrt[15]) }
@PeterArkadievКүн бұрын
Since both equations are symmetrical, the two "different" solutions are just notational variants
@BSrour-lv1coКүн бұрын
Why bother finding the complex roots exact values if they are to be discarded? A lot of wasted time. In addition, it was clear from the get-go that the solution is negative because otherwise the cube would be greater than the square and hence the difference would be negative!
@shakilahmad8246Күн бұрын
X+3=2 ; X=2-3; X=-1 (Bcz power are same) Very simple
@Helllow-m4s2 күн бұрын
Logb10 24/logb10 6 = logb10 4 or 1.7 he just showed us how to find it without an calculator.
@brainstain06772 күн бұрын
cringe ass video, you are just taaking log and calling it nIcE oLyMpIaD QuEsTiOn. Do some real math baby boy. This video infuriates me to no ends.
@graphicmaths76772 күн бұрын
I would have thought a Harvard candidate would be able to simplify (1/3)^(1/3) to 1/∛3 in a single step? You just take the cube root of the numerator and denominator. To my mind, that is the simplest way to write the expression. What is gained by writing it as ∛(3^2)/3? That seems more complicated than the original form. But in any case you can get from 1/∛3 to ∛(3^2)/3 in a couple of extra steps.
@kaustubhgawali19552 күн бұрын
6^x=24 X=log 24 base 6 Or X=1+log 4 base 6
@adityakambli8528Күн бұрын
Bro , you are completely wrong, learn the log property , log(a/b) = loga - logb
@kaustubhgawali1955Күн бұрын
@adityakambli8528 yea bro got it
@manan33452 күн бұрын
X= log4
@adityakambli8528Күн бұрын
No, i think you used loga/logb = loga - logb which is not true, it's log(a/b) = loga - logb
@d.bpatil63612 күн бұрын
Very simple. a = -5 (minus five)
@ffggddss2 күн бұрын
Here's a method to remember when, like here, you need to find a & b, given their sum (S = a+b) & product (P = ab). If you form the product of these binomials to make the quadratic equation, (x-a)(x-b) = 0, you get x² - (a+b)x + ab = x² - Sx + P = 0 Solve that by any quadratic solution method to get a & b. In the present case, that will be x² - 12x + 66 = 0 The discriminant for this is < 0, so the solutions will be two conjugate complex numbers. Let's use "complete the square." To do that here, that "66" needs to become (½·12)² = 36, so just subtract 30 from both sides: x² - 12x + 36 = -30 x - 6 = ±√(-30) x = 6 ± i√30 Finally, check that the sum & product are the given values. As usual, this is left to the student. Fred
@ffggddss2 күн бұрын
NB. Because the original problem was completely symmetric in a & b, swapping their values in any solution is another solution. So when you got an equation for a, the same equation pertains to b, and the two solutions of that quadratic are just a & b, in either order. You could have saved yourself a lot of work, from about the middle of the video, by noticing this.
@TheEulerID2 күн бұрын
It helps if you explain why you are multiplying by the (√3 - √12) rather than just do it. The reason why we choose to do it is explicitly to use the (a+b)(a-b) = a^2-b^2 equality in order to get rid of the square roots in the divisor. Yes, you show that what's happens, but it is much, much better to explain why you are doing it in the first place. So it would be much better to explain the thinking first, and not make it just appear as the result as if by magic.
@bitboy172 күн бұрын
Можно короче: а^2 ( 1 - a ) = 150 = (25)(6), то есть 1 - а = 6 и а = - 5 . А комплексные корни можно найти потом из квадратного уравнения.
@wes96272 күн бұрын
√x=5+z and √y=5-z; (5+z)(5-z)=10; z^2=15; z=±√15; x=(5±√15)^2 and y=(5∓√15)^2
@新ちゃん-w9q2 күн бұрын
マイナス5
@wes96272 күн бұрын
∛9/3
@FeLiNe4182 күн бұрын
8 minutes for an operation I did in 5 seconds in my head. lmao
@kayhchoo2 күн бұрын
If you can guess to split 150 into 25 and 125, than you should get the answer a= -5 without any calculation 😂
@arturovinassalazar2 күн бұрын
I did it this way: (v3-v12)/(v3+v12)= (v3-2v3)/(v3+2v3)= -v3/(3v3)= -1/3
@christoffussenegger93772 күн бұрын
Exactly, straight forward approach. I did roughly the same, it took me less than 10sec to get the answer, no need for an 8min video.
@nigellbutlerrr26382 күн бұрын
6 🎉4🎉
@Leonhard-Euler3 күн бұрын
1) for a > 1, the equations does not hold 2) for 0 <= a <= 1, the equation does not hold 3) for -1 <= a < 0, the equation does not hold 4) find a=-5 is a root the other part is easy
@oahuhawaii21413 күн бұрын
b = 81; k = 30 b^sin²(x) + b^cos²(x) = k b^(sin²(x)+cos²(x)) + (b^cos²(x))² = k*b^cos²(x) (b^cos²(x))² - k*b^cos²(x) + b^1 = 0 b^cos²(x) = (k/2) ± √((k/2)² - b) 81^cos²(x) = 15 ± √(225 - 81) 3^(4*cos²(x)) = 15 ± 12 = 3, 27 4*cos²(x) = 1, 3 cos(x) = ±1/2, ±√3/2 x = π/6 + k*π/2, π/3 + k*π/2, k ∈ ℤ = (3*k + 1)*π/6, (3*k + 2)*π/6, k ∈ ℤ x = ±π/6 + k*π, ±π/3 + k*π, k ∈ ℤ Unique solutions: x = ±30⁰, ±60⁰, ±120⁰, ±150⁰
@georgecurrie48083 күн бұрын
Where's the "trick"? He just explores possible combinations of x and y, and if you're doing that it's much quicker to simply subtract 36 from squares of x and seeing which give a square as y squared (so x= 6 gives y=0 and x = 10 gives y = 8).
@egitimg3 күн бұрын
a=-5 not in 10 seconds but in 20 seconds cos I am not mathematician, I am just ordinary person.
@seyupo3 күн бұрын
Since you guessed one root y=5 then divide the polynomial (yyy -yy-100)/(y-5) = yy+4y+20 and solve the quadratic equation for the other two roots. Will save you 10 minutes out of 11:47.
@와우-m1y3 күн бұрын
asnwer=(1/+/4 ) (1-/4) isit
@와우-m1y3 күн бұрын
asnwer=1/3 isit hmm gmm
@myasu13713 күн бұрын
感覚的に5と解る。
@МишаЖиленко-у6б3 күн бұрын
Its the simplest explanation i've seen on KZbin! Thank you very much!!
@hassanhrimach37843 күн бұрын
I exposant 2= -1
@bjornfeuerbacher55144 күн бұрын
The second method actually is virtually the same as the first one. The only difference is that you use the special ln instead of the general log. And writing x = 2.4650 is actually wrong. x is not _equal_ to that number, that is only an _approximation_. (Already saying that ln(15) "is equal to" 2.7081 is wrong.)
@Mathsfocus86103 күн бұрын
With the first method, you can easily get your answer without using a calculator
@bjornfeuerbacher55143 күн бұрын
@@Mathsfocus8610 Yes, so why did you even bother to go on with a second method, which is worse than the first one?
@Mathsfocus86103 күн бұрын
@@bjornfeuerbacher5514 so that people can as well learn it too. Math... The fact is that every video posted is for a wide range of people. Professional and Non professional. In this life, learning is continuous. Thank you
@geevithamokanrach11644 күн бұрын
Great sir
@Mathsfocus86104 күн бұрын
@@geevithamokanrach1164 thank you
@_ButterflyM_4 күн бұрын
this is a joke right 💀
@김만복-e5o4 күн бұрын
a^2(a-1)=-5*5*3*2 thus a=-6
@MathildePerrin-gr2rn4 күн бұрын
Just intuitively: x=6 y=4
@1959Berre4 күн бұрын
It took me 3 seconds
@dragonuv6204 күн бұрын
Pretty sure this guy added harvard as a SEO tactic because if this high school level index math is harvard interview level, then i am fuckin Albert Einstein.