Пікірлер
@ShaikShama-q5v
@ShaikShama-q5v 15 сағат бұрын
Tq sir
@theBackbenchers082
@theBackbenchers082 Күн бұрын
How to get pdf
@mdsaquibansari481
@mdsaquibansari481 14 күн бұрын
Thanks
@mathsbyrj621
@mathsbyrj621 Ай бұрын
Thankyou sir
@ajmishhossain3941
@ajmishhossain3941 Ай бұрын
Sir u is bounded as x tends to infinity but how can you say it's Fourier transformation is also bounded as x tends to infinity
@anaghalayajith1836
@anaghalayajith1836 Ай бұрын
Tnq sir
@ganitkatha3299
@ganitkatha3299 Ай бұрын
Please tell the software name
@Rinky.....rana5438
@Rinky.....rana5438 2 ай бұрын
Very nice explanation
@TOPOLOGY_GAMING
@TOPOLOGY_GAMING 3 ай бұрын
Jay ganesh ji❤
@meenudubey9476
@meenudubey9476 3 ай бұрын
You are just awesome
@fatmasevincdurak9404
@fatmasevincdurak9404 3 ай бұрын
❤😂🎉😢😮😅
@v.j.trivedi595
@v.j.trivedi595 3 ай бұрын
Great sir...👏👏
@Vikash-ht3mj
@Vikash-ht3mj 3 ай бұрын
Great explanation! You really broke down the concepts in a clear and concise way. It made everything so much easier to understand. Thanks for the insightful lecture!
@omjoshi4330
@omjoshi4330 3 ай бұрын
Very helpful sir..🙏🏻
@HarshiT0143
@HarshiT0143 4 ай бұрын
7:23 pls explain it properly anyone
@BavaShri-rj3tp
@BavaShri-rj3tp 6 ай бұрын
I didn't understand your hand writing sir
@Keerthiga-b6g
@Keerthiga-b6g 6 ай бұрын
Give me the Poisson integral notes pdf sir
@stayhappy4674
@stayhappy4674 7 ай бұрын
why does he delete sin in 12.45 please
@prashantpatel6777
@prashantpatel6777 7 ай бұрын
Use formula of cos(a+b)
@holyshit922
@holyshit922 8 ай бұрын
37:23 I can do this without complex numbers 1. Solve recurrence relation using exponential generating function 2. Solve differential equation (initial value problem) with Laplace transform E''(t) - 2xE'(t)+E(t) = 0 E(0) = 1 E'(0) = x E(x,t) = exp(xt)*cos(sqrt(1-x^2)*t) 3. Because it is easy to get nth derivative of each factor then we can use general product rule (In some countries it is called Leibniz's product rule and looks like binomial expansion but instead of powers we have derivatives)
@holyshit922
@holyshit922 8 ай бұрын
I solved it at ordinary point x_{0} = 0 and I have got result T_{n}(x) = a_{n}\left(\sum\limits_{k=0}^{ floor\frac{n}{2} \lfloor}\frac{(-1)^k}{2^n}\cdot\frac{n}{n-k}\cdot {n - k \choose k} \cdot \left(2x ight)^{n-2k}\lfloor} ight) a_{n}\left(\sum\limits_{k=0}^{ floor\frac{n}{2} \lfloor} \frac{(-1)^k}{2^{2k}} \cdot\frac{n}{n-k}\cdot {n-k \choose k} ight) = 1 I need to calculate sum \sum\limits_{k=0}^{ floor\frac{n}{2} \lfloor} \frac{(-1)^k}{2^{2k}} \cdot\frac{n}{n-k}\cdot {n-k \choose k} but still solution will be valid only for positive integers (not valid for n = 0)
@holyshit922
@holyshit922 8 ай бұрын
I used ordinary point x_{0} = 0 and got two version of solution with Gamma function and with binomial coefficient Both versions of solution are valid for p \in N \ {0} His name in Cyrylic is written as follows Чебышёв
@holyshit922
@holyshit922 8 ай бұрын
Yes but if we want to get Chebyshev polynomial from solution of ODE it must satisfy following conditions p must be non-negative integer y(-x) = (-1)^py(x) y(1) = 1
@milesporto1160
@milesporto1160 8 ай бұрын
great video
@bts_real_army9840
@bts_real_army9840 8 ай бұрын
I'm really sorry sir ....but your answer is totally wrong .....sin part will vanish not cosine part
@shanti-peaceformathematics225
@shanti-peaceformathematics225 8 ай бұрын
Thank you for your interest. Kindly please check in the video. It is sine part is vanish not cosine part. It is correct.
@bts_real_army9840
@bts_real_army9840 8 ай бұрын
okay ....i'm sorry BUT still i want to say in your last page .....you wrote wrong answer like ∑aₙ sin nx instead of cos nx ......may be you didn't notice ...i think...
@calciferrrr
@calciferrrr 22 күн бұрын
It's written correctly ancosnx only
@jananisri806
@jananisri806 9 ай бұрын
Very helpful video sir . Detailed explanation .Thank you so much
@Sri_Vinayaka
@Sri_Vinayaka 9 ай бұрын
Super 👍
@rameshdd3203
@rameshdd3203 9 ай бұрын
Mean value theorem sir
@LaeOhmarThein
@LaeOhmarThein 9 ай бұрын
Please, what is periodicity conditions Sir?
@kalaiarasi6815
@kalaiarasi6815 10 ай бұрын
Good, is there any necessary u(x,y)is uniformly continuous.
@forbiddenmemes
@forbiddenmemes 10 ай бұрын
class ke bacche toh bol nahi payenge lekin kitna chutiya padhaya hai. nahi aata professor ko toh pta nahi kyu padhate hai.
@sherinsuganthi6095
@sherinsuganthi6095 10 ай бұрын
Shall I need solution of dirchilet problem for circular annulus with proof
@anshumanpal8078
@anshumanpal8078 10 ай бұрын
Very helpful ❤
@pechiyammalesakkipandi
@pechiyammalesakkipandi 10 ай бұрын
In the last term substitute, how 2pi will come for a second integral
@pechiyammalesakkipandi
@pechiyammalesakkipandi 10 ай бұрын
Please reply
@LakshyaLakshya-q3x
@LakshyaLakshya-q3x 10 ай бұрын
Thank you so much sir this was very help full and it was easy understanding method🎉❤
@shanti-peaceformathematics225
@shanti-peaceformathematics225 10 ай бұрын
Most welcome 😊
@priya-z333
@priya-z333 11 ай бұрын
Thank you sir... very helpful 😇
@shanti-peaceformathematics225
@shanti-peaceformathematics225 10 ай бұрын
Most welcome 😊
@brightcoaching7917
@brightcoaching7917 11 ай бұрын
Apriciated🎉🎉
@sauhadra9396
@sauhadra9396 Жыл бұрын
Thank you. great lacture.
@sherinsuganthi6095
@sherinsuganthi6095 Жыл бұрын
Marvelous explanation and easy to understand sir.
@sherinsuganthi6095
@sherinsuganthi6095 Жыл бұрын
Explain minimum principle also sir
@sherinsuganthi6095
@sherinsuganthi6095 Жыл бұрын
Excellent explanation sir
@user404notfound46
@user404notfound46 Жыл бұрын
incredible
@himansubarik9397
@himansubarik9397 Жыл бұрын
it is very help full
@SANCHITSANYAM-e5g
@SANCHITSANYAM-e5g Жыл бұрын
thanks sir amazing content,its helping in opur sem exam
@AbjSir
@AbjSir Жыл бұрын
Thank you
@kushagrasinghal8209
@kushagrasinghal8209 Жыл бұрын
at around 4:30 how can we say that f inverse of X2 is X? Let me know!
@kushagrasinghal8209
@kushagrasinghal8209 Жыл бұрын
nevermind
@prashantpatel6777
@prashantpatel6777 Жыл бұрын
Yes it always true for any function.
@md.zafaralam
@md.zafaralam Жыл бұрын
thanku sir
@thanganaresh9735
@thanganaresh9735 Жыл бұрын
Can you help the answer of this question Prove that homeomorphism is an equivalence relation among metric spaces
@santhoshobilisetti7038
@santhoshobilisetti7038 Жыл бұрын
What is the value of x to be placed
@nishantsingh5318
@nishantsingh5318 Жыл бұрын
Thankyou so much for this maths series . It helpa lot keep going
@sachinmahilange5580
@sachinmahilange5580 Жыл бұрын
Not understandable, & your writing too