Sir u is bounded as x tends to infinity but how can you say it's Fourier transformation is also bounded as x tends to infinity
@anaghalayajith1836Ай бұрын
Tnq sir
@ganitkatha3299Ай бұрын
Please tell the software name
@Rinky.....rana54382 ай бұрын
Very nice explanation
@TOPOLOGY_GAMING3 ай бұрын
Jay ganesh ji❤
@meenudubey94763 ай бұрын
You are just awesome
@fatmasevincdurak94043 ай бұрын
❤😂🎉😢😮😅
@v.j.trivedi5953 ай бұрын
Great sir...👏👏
@Vikash-ht3mj3 ай бұрын
Great explanation! You really broke down the concepts in a clear and concise way. It made everything so much easier to understand. Thanks for the insightful lecture!
@omjoshi43303 ай бұрын
Very helpful sir..🙏🏻
@HarshiT01434 ай бұрын
7:23 pls explain it properly anyone
@BavaShri-rj3tp6 ай бұрын
I didn't understand your hand writing sir
@Keerthiga-b6g6 ай бұрын
Give me the Poisson integral notes pdf sir
@stayhappy46747 ай бұрын
why does he delete sin in 12.45 please
@prashantpatel67777 ай бұрын
Use formula of cos(a+b)
@holyshit9228 ай бұрын
37:23 I can do this without complex numbers 1. Solve recurrence relation using exponential generating function 2. Solve differential equation (initial value problem) with Laplace transform E''(t) - 2xE'(t)+E(t) = 0 E(0) = 1 E'(0) = x E(x,t) = exp(xt)*cos(sqrt(1-x^2)*t) 3. Because it is easy to get nth derivative of each factor then we can use general product rule (In some countries it is called Leibniz's product rule and looks like binomial expansion but instead of powers we have derivatives)
@holyshit9228 ай бұрын
I solved it at ordinary point x_{0} = 0 and I have got result T_{n}(x) = a_{n}\left(\sum\limits_{k=0}^{ floor\frac{n}{2} \lfloor}\frac{(-1)^k}{2^n}\cdot\frac{n}{n-k}\cdot {n - k \choose k} \cdot \left(2x ight)^{n-2k}\lfloor} ight) a_{n}\left(\sum\limits_{k=0}^{ floor\frac{n}{2} \lfloor} \frac{(-1)^k}{2^{2k}} \cdot\frac{n}{n-k}\cdot {n-k \choose k} ight) = 1 I need to calculate sum \sum\limits_{k=0}^{ floor\frac{n}{2} \lfloor} \frac{(-1)^k}{2^{2k}} \cdot\frac{n}{n-k}\cdot {n-k \choose k} but still solution will be valid only for positive integers (not valid for n = 0)
@holyshit9228 ай бұрын
I used ordinary point x_{0} = 0 and got two version of solution with Gamma function and with binomial coefficient Both versions of solution are valid for p \in N \ {0} His name in Cyrylic is written as follows Чебышёв
@holyshit9228 ай бұрын
Yes but if we want to get Chebyshev polynomial from solution of ODE it must satisfy following conditions p must be non-negative integer y(-x) = (-1)^py(x) y(1) = 1
@milesporto11608 ай бұрын
great video
@bts_real_army98408 ай бұрын
I'm really sorry sir ....but your answer is totally wrong .....sin part will vanish not cosine part
@shanti-peaceformathematics2258 ай бұрын
Thank you for your interest. Kindly please check in the video. It is sine part is vanish not cosine part. It is correct.
@bts_real_army98408 ай бұрын
okay ....i'm sorry BUT still i want to say in your last page .....you wrote wrong answer like ∑aₙ sin nx instead of cos nx ......may be you didn't notice ...i think...
@calciferrrr22 күн бұрын
It's written correctly ancosnx only
@jananisri8069 ай бұрын
Very helpful video sir . Detailed explanation .Thank you so much
@Sri_Vinayaka9 ай бұрын
Super 👍
@rameshdd32039 ай бұрын
Mean value theorem sir
@LaeOhmarThein9 ай бұрын
Please, what is periodicity conditions Sir?
@kalaiarasi681510 ай бұрын
Good, is there any necessary u(x,y)is uniformly continuous.
@forbiddenmemes10 ай бұрын
class ke bacche toh bol nahi payenge lekin kitna chutiya padhaya hai. nahi aata professor ko toh pta nahi kyu padhate hai.
@sherinsuganthi609510 ай бұрын
Shall I need solution of dirchilet problem for circular annulus with proof
@anshumanpal807810 ай бұрын
Very helpful ❤
@pechiyammalesakkipandi10 ай бұрын
In the last term substitute, how 2pi will come for a second integral
@pechiyammalesakkipandi10 ай бұрын
Please reply
@LakshyaLakshya-q3x10 ай бұрын
Thank you so much sir this was very help full and it was easy understanding method🎉❤
@shanti-peaceformathematics22510 ай бұрын
Most welcome 😊
@priya-z33311 ай бұрын
Thank you sir... very helpful 😇
@shanti-peaceformathematics22510 ай бұрын
Most welcome 😊
@brightcoaching791711 ай бұрын
Apriciated🎉🎉
@sauhadra9396 Жыл бұрын
Thank you. great lacture.
@sherinsuganthi6095 Жыл бұрын
Marvelous explanation and easy to understand sir.
@sherinsuganthi6095 Жыл бұрын
Explain minimum principle also sir
@sherinsuganthi6095 Жыл бұрын
Excellent explanation sir
@user404notfound46 Жыл бұрын
incredible
@himansubarik9397 Жыл бұрын
it is very help full
@SANCHITSANYAM-e5g Жыл бұрын
thanks sir amazing content,its helping in opur sem exam
@AbjSir Жыл бұрын
Thank you
@kushagrasinghal8209 Жыл бұрын
at around 4:30 how can we say that f inverse of X2 is X? Let me know!
@kushagrasinghal8209 Жыл бұрын
nevermind
@prashantpatel6777 Жыл бұрын
Yes it always true for any function.
@md.zafaralam Жыл бұрын
thanku sir
@thanganaresh9735 Жыл бұрын
Can you help the answer of this question Prove that homeomorphism is an equivalence relation among metric spaces
@santhoshobilisetti7038 Жыл бұрын
What is the value of x to be placed
@nishantsingh5318 Жыл бұрын
Thankyou so much for this maths series . It helpa lot keep going