Lecture clearly explores how ethics important in research
@AbhayMachchharКүн бұрын
Thanks
@jagrutibendaki4972Күн бұрын
It's a good information 👍
@ummehanysiddiqui9512Күн бұрын
Thanks for providing this information 👍
@ummehanysiddiqui9512Күн бұрын
Thanks for providing this content 👍
@ummehanysiddiqui9512Күн бұрын
It is informative 👍
@chaundevangi5956Күн бұрын
Thank you for explaining about research ethics in detail and knowledgeable session
@chaundevangi5956Күн бұрын
Thank you so much for giving us information about the importance of research ethics..
@varshabagohil2461Күн бұрын
Thank you maam
@dipakmm27Күн бұрын
Informative
@vijaybhatu95Күн бұрын
Clear and detailed explanation about Research Ethics
@yahyayusuf-n7i3 күн бұрын
In equation 5, why did you substitute Yi once with 556 and the other with 511? Shouldn't both be 1067?!
@JosephinePeprah-o7b16 күн бұрын
This is very informative. Thanks to all those who shared their knowledge and understanding.
@taehyunallisonlee178517 күн бұрын
6:44
@luisadoamaral22 күн бұрын
I have watched this lecture multiple times and I always come back to it. PRofessor Abbott is one of the reasons I fell in love with Sociology.
@OriginalJoseyWales23 күн бұрын
Is the Fife dataset available?
@OriginalJoseyWales23 күн бұрын
Actually I found it install.packages('R2MLwiN') data(xc, package = "R2MLwiN") str(xc)
@drissaitali597925 күн бұрын
i have latent variable which is measured through 2 items, so to avoid the probleme of identification, can i use the score of the two items and treat it as an observed variable?
@patrickkielly28 күн бұрын
What is the link for this example? Logit or Probit?
29 күн бұрын
Excellent
@唐蜜-n9iАй бұрын
Thanks a lot!
@chauhannishith1773Ай бұрын
Thank you for Valuable lecture on Research Ethics
@chauhannishith1773Ай бұрын
Thank you for informative session on research ethics.
@chauhannishith1773Ай бұрын
Ethical Theory : Deontology, consequentialism, virtue ethics, value ethics, and indigenous research ethics. Greatly explained.
@iamiriiiiiiiiiisАй бұрын
That was very clear and helpful, thank you for sharing your work!
@vaibhavkotecha6030Ай бұрын
Insightful
@bipasakarmakar77662 ай бұрын
Nice explanation
@bipasakarmakar77662 ай бұрын
Good
@sumonasantra30352 ай бұрын
Well explained
@sumonasantra30352 ай бұрын
Easy to understand..
@learnenglisheasily1112 ай бұрын
Enriching video!
@sumonasantra30352 ай бұрын
Clear & detailed explanation
@purbayantarafder73722 ай бұрын
Well explained
@purbayantarafder73722 ай бұрын
Thank you so much
@karalsmith12 ай бұрын
I'm a grad student at ASU. Your text book is required reading reading for our intro to research and evaluation course. I found that even though I have your text book, it helped me to hear your live explanation on multiple topics. Thank you!
@purbayantarafder73722 ай бұрын
Awesome video 😊
@ML-hu7ny2 ай бұрын
A short but clear articulation.
@trajifo22202 ай бұрын
Excellent videos!, please can you profoundize about categorical variables and SEM modelling?
@anohoang12752 ай бұрын
Thank you very much.
@SaurinPatel-d3x2 ай бұрын
nice one
@David-vu6xd2 ай бұрын
Absolutely excellent video. Thank you so much!
@trevorpope19132 ай бұрын
Thank you for your excellent presentation
@cecilechau79323 ай бұрын
It is a computational program - contrast with experiment
@cecilechau79323 ай бұрын
How he introduced ABM , SEIR
@cecilechau79323 ай бұрын
Tipping points, ABM can model the nonlinearity. A good idea is to think about the nonlinear lift in the group
@shuyiqiu9923 ай бұрын
This lecture is straightforward and easy to understand! Thank you so much for sharing it! There might be a typo in the slides of "Step 2 Estimate measurement error". The number of observations assigned to "abstainer" should be 5 instead of 8?
@yesno52863 ай бұрын
the refernce at 9:53 has expired, is there a change to provide an alternative link to practice this along? stats.oarc.ucla.edu/other/dae/ordered-logistic-regression -expired stats.oarc.ucla.edu/other/dae/ - alternative model data.
@yesno52863 ай бұрын
awsome video thank you for explaining it!
@sarojadhikari25623 ай бұрын
Thats really the easiest way of learning SEM. Great lecture