Thanks for this educative lecture. According to calculus textbooks, the error comes from the fact that at 1:50 g(x+h)-g(x) can be equal to 0 WHEN h ≠ 0. However i observe this seem to be true ONLY when g(x) is a constant function. Is my observation correct? If am correct, we can therefore rule out g(x) being a constant function in this "wrong" proof, and the proof becomes correct.
@janfreol12 ай бұрын
The functions that we see in Calculus are usually quite well behaved and may fool us into thinking that this is the case for most functions. An example of a function for which the condition you mention fails, but which is not constant, is f(x) = sin(1/x). Of course this function is not defined at x=0 (which is where it will take the same values an infinite amount of times), but this can be fixed by putting f(x) = x sin(1/x) for x not equal to 0, and f(0) = 0. In this way, it is even differentiable at 0. Many other examples exist - try asking ChatGPT :-)
@MathMaths-e5x2 ай бұрын
@@janfreol1 Is there a way to ultimately prove the chain rule in calculus 1?
@donqe64392 ай бұрын
I dont get how i continue the last step Can someone help?
@janfreol12 ай бұрын
Ok. Let me give you a hint. The choice for epsilon_1 is straight-forward since M is a constant (that epsilon_1 is allowed to depend on). The choice for epsilon_2, however, requires some more work, as epsilon_2 is not allowed to depend on a_n (as it changes with n - which is the variable here). So, you need to figure out a way to replace the absolute value of a_n by some (possibly larger) constant in the inequality.
@Simeulf3 ай бұрын
Thank you for making this video while on the beach!
@ArthurZeuner3d3 ай бұрын
Yes, that‘s the kind of dedication I expect from all university teaching staff. Olsen for president!
@TheGoodGod3 ай бұрын
@@ArthurZeuner3dwe need more Hawaiian shirt!
@janfreol13 ай бұрын
Is there any other way? ;-)
@quaternion32678 ай бұрын
Very nice name of the university
@Stejarulpufos70 Жыл бұрын
This is I believe The Best Proof of the Chain Rule in yt. I've double checked it myself, wrote it down in my own words and I am grateful to be able to understand it. Thank you!
@osmanmulic4557 Жыл бұрын
Thanks a lot
@samithaamcbkj Жыл бұрын
N has not a least upper bound.
@sitienlieng Жыл бұрын
We can contradict right at the second line after negated the statement. Suppose there is an x in R that is larger than any natural number n. Then the set of the natural number is bounded above, but N is not bounded above, a contradiction.
@jan-fredrikolsen5369 Жыл бұрын
But how do you know (a priori) that N does not have an upper bound?
@mrhatman675 Жыл бұрын
@@jan-fredrikolsen5369 You assumed going towards a contradiction that the set of natural numbers has an upper bound but how do you show that they also have a suppremum
@hiteshattri611 Жыл бұрын
3:47 do we need to sayN* to terminate 0 but 0 itself doesn't lie in N
@jan-fredrikolsen5369 Жыл бұрын
Whether or not N contains 0 is a matter of definition. Some countries, like Sweden and France, tend to include 0 in N. In these countries, the notation N* is therefore used to denote the non-zero positive integers.
@joebagot41222 жыл бұрын
lovely proof :)
@1Healthmatters2 жыл бұрын
Thank you
@bntv882 жыл бұрын
I don't understand how you come up with n less than or equal to 1 over 1-D......Please enlighten me. Can you do it step by step?
@passedexams72172 жыл бұрын
You multiply all the terms by n to get n(1-D) smaller/equal to one, and then divide both sides by (1-D)
@wowfmomf61262 жыл бұрын
Amazing work i really was confused about this because my textbook(stewarts early transcendentals) adds a strange condition for this test which is that the second derivative needs to be continuous near c (i think it is enough for it to be continuous at c) and i can not see why that is necessary.
@wowfmomf61262 жыл бұрын
Btw subscribed this an underated channel.
@jan-fredrikolsen5369 Жыл бұрын
@@wowfmomf6126 Sorry, late answer, but no need to suppose any continuity of f'' anywhere. In terms of the second derivative, it is actually enough that f''(c) exists and is positive or negative. Here, I assume that f'' exists on (a,b) but outside of f''(c) existing, I actually just need to know that f' exists on (a,b). So, here, I am actually assuming more than I need.
@kjudge972 жыл бұрын
I have questions. At what expense do I play said lotteries? How many other players are there and how many tickets are they buying? What if I can't answer because I feel indifferent about the prize? Why is this so vague? I need more data. Also, what's the deal with the definition of 'independence' in decision-making? Only because I'm sure that 'independence' should mean that I can choose whichever I like and it not be "right" or "wrong" - excuse my confusion.
@ahmadal_sharkawi60442 жыл бұрын
Thank you very much
@NotGoingCrazy3 жыл бұрын
Fan riktigt snyggt visuellt visat, I min bok gör dem det endast algebraiskt / med text, man får en mycket bättre uppfattning med bilden !
@yparraguirreromalynq.65413 жыл бұрын
Archimedean principle use proof by contradiction please
@getz3 жыл бұрын
Men detta gäller väll inte för sin(1/x) som tas upp på sidan 494? Där är den punktvis kontinuerlig fast ej likformigt.
@jan-fredrikolsen53693 жыл бұрын
Detta gäller om en funktion är kontinuerlig på ett slutet intervall. Dvs., för slutna intervaller där sin(1/x) är punktvis kontinuerlig, så är även sin(1/x) likformig kontinuerlig.
@northernexplorer36543 жыл бұрын
This was very helpful thank you :)
@janda12583 жыл бұрын
prop. (ii), shouldn't it be multiplication instead of addition?
@jan-fredrikolsen53693 жыл бұрын
Oh crap, yes, decidedly a brainfart on my part :-)
@JohnSmith-zq9mo4 жыл бұрын
In the statement of the theorem it is important to also add that the requirement that the limit of f'/g' exists.
@JohnSmith-zq9mo3 жыл бұрын
@Jovannie Castillo Don't think that is needed? The assumption of differentiability implies f,g continuous in punctured neighborhood.
@funkykong63564 жыл бұрын
So In (x) is an integral?
@jan-fredrikolsen53694 жыл бұрын
Yes, but in the course this definition comes before the definite integral is defined, so we need to express this definition without that machinery.
@ivstast4 жыл бұрын
Whatever happened to the chilled-out & super-radical beach background for the webcam? :[
@liridonbardoniqi90834 жыл бұрын
f.lux Plot Twist: He was actually on vacation when he filmed those videos.
@jan-fredrikolsen53694 жыл бұрын
Maybe I will have to come up with something for the next batch :-)
@kareemn79634 жыл бұрын
Hi Dear professor Oslen. I'm incoming international student. Please where can I access to One variable Calculas lecture notes written by you because I want to study before I arive since I have free Time now, Thank you? Also I couldn't find past year exams on the website unlike the Linear Algebra course.
@Aliiice964 жыл бұрын
Super bra video! Tack! Har tenta i envariabel imorgon, detta hjälpte mycket!
@Oskise4 жыл бұрын
Bra video, men vid 1:00 så är väl derivatan av g(x) ändå f(x) :-)
@jan-fredrikolsen53694 жыл бұрын
Aargh! :-O
@rubic644 жыл бұрын
Otroligt att en sådan bra video bara har fått 1039 visningar. Jan-Fredrik Olsen, testa att göra på engelska så får du mer tittare.
@axelwetterlundh42927 жыл бұрын
Varför har du inte sådan frisyr längre?
@gustav9018 жыл бұрын
Jag uppskattade hastigheten av den här videon. Väldigt bra.
@Chronos10 жыл бұрын
På 5:02 hur kommer det sig att du inte använder samma uttryck när x går mot minus oändlighet som du använder för när x går mot positiv oändlighet?
@jan-fredrikolsen536910 жыл бұрын
I beräkningen innan använde vi att x var positiv (vid 3:32) vilket inte gäller när x går mot minus oändligheten. Alltså måste vi börja om igen. Man kan göra en motsvarande beräkning som innan (men man måste då komma ihåg att ta med ett extra minus-tecken när man bryter ut x^2 från kvadratroten), men det behövs inte - vilket är vad vi i princip observerar vid 5:02. Detta därför att oändligheten minus oändligheten måste man räkna vidare på medan oändligheten plus oändligheten vet man att direkt ger oändligheten.
@jan-fredrikolsen536911 жыл бұрын
Du borde komma åt allt material direkt. Försök klicka på titlerna, t.ex. "Kap 2: Funktioner".
@75gauss11 жыл бұрын
Jättebra - gillar dina videor skarpt. En fråga: När jag loggar in på moodle med mitt lucatkonto så ser jag inget kursmaterial. Måste jag registrera mig på kursen för att se det?