Show how you check that 1997 is a prime number. Similarly, show how you check that 499 is a prime number. If you know this, the task is trivial. When trying to solve it, I suspected that 1997 was a prime number, but I didn't want to waste my time checking. Show how you can quickly check this (without a calculator).
@Eichro16 сағат бұрын
How are we supposed to know which numbers are prime, though?
@Alan-d4j16 сағат бұрын
Checking all possible prime factors such that the square of the prime is less than or equal to the number (Alternatively all prime factors less than the square root of the number, but that's a strictly calculator operation)
@satyapalsingh4429Күн бұрын
Good problem on Number System .
@anonymoushiphopperКүн бұрын
9 is the highest number in this realm no matter how high you count number of completion 1089 and 6174 both add up to equal 9 the only way to excede the number 9 is through physical death or earthly transition i dont know how i know this seriously
@Bagas-rd1lk2 күн бұрын
Solved it, thanks!
@SrisailamNavuluri3 күн бұрын
Thank you. For p>=3,odd prime,p^4 is odd number p^4+31 is even greater than 31 If p is prime p^4+31 is also prime. (2,47) This is only addition.
@gregevgeni18643 күн бұрын
Nice! Thanks for sharing!
@chanlyelee3 күн бұрын
Sorry for the following typo errors: 1:33 we consider the quadratic equation (in u), so we shoule write u>0 and u is real. 5:00 equality holds iff (a,b)=((sqrt(2)-1)t ,t) for positive t.
@matthewfeig56243 күн бұрын
A trig substitution would work pretty well: a = r*cos t, b = r*sin t for 0<r and 0<t<pi/2. The denominator cancels out to give J = (sin t)(cos t) + (sin t)^2, which can be simplified with double angle and angle addition formulas. J = 1/2*[ 1 + sin(2t) - cos(2t) ] = 1/2*[ 1 + sqrt(2) * (sqrt(2)/2*sin(2t) - sqrt(2)/2*cos(2t)) ] = 1/2*[ 1 + sqrt(2) * (cos(pi/4)*sin(2t) - sin(pi/4)*cos(2t)) ] = 1/2*[ 1 + sqrt(2)*sin (2t - pi/4) ] <= 1/2*[ 1 + sqrt(2) ] Equality would be when 2t= 3pi/4, so sin(2t) = sqrt(2)/2 and cos(2t) = -sqrt(2)/2.
@chanlyelee3 күн бұрын
Thanks for sharing
@makimilanovic763 күн бұрын
Nice, but there's no need to include AI-generated videos of a person. Serves no useful purpose.
@chanlyelee3 күн бұрын
Thanks for the suggestions.
@gregevgeni18644 күн бұрын
Nice solutions! Thanks for sharing!
@chanlyelee3 күн бұрын
Thanks for watching!
@gregevgeni18644 күн бұрын
Clever trick! Nice solution 💯! Thanks for sharing!
@chanlyelee4 күн бұрын
Glad you like it!😀
@satyapalsingh44295 күн бұрын
Interesting problem and its solution ❤❤❤
@chanlyelee4 күн бұрын
Thanks 👍
@ronbannon5 күн бұрын
Always a pleasure to see the problems you post. Thanks for sharing.
@chanlyelee5 күн бұрын
Thanks. 🙏 👍
@gregevgeni18645 күн бұрын
Nice solution! Thanks for sharing!
@chanlyelee5 күн бұрын
Thanks 🙏👍
@satyapalsingh44296 күн бұрын
Good problem and its solution
@chanlyelee6 күн бұрын
Thanks 🙏👍
@SrisailamNavuluri7 күн бұрын
Nice approach.
@chanlyelee6 күн бұрын
Thanks!
@gregevgeni18647 күн бұрын
Smart solution! Thanks for sharing!
@chanlyelee7 күн бұрын
Thanks for watching!
@nitues7 күн бұрын
Double cauchy is genius
@khairyzal72437 күн бұрын
For 3 digit, u minus large with small becomes 495
@chanlyelee5 күн бұрын
You are right 👍
@prienietisAugis8 күн бұрын
Am-gm by balancing powers without substitution works too
@sarita98 күн бұрын
Thank you so much 😮 😊😊😊😊
@gregevgeni18648 күн бұрын
Amazing solution! Thanks for sharing!
@gregevgeni18649 күн бұрын
Nice!!
@AJ-ws1vg9 күн бұрын
Hello sir I solved the whole thing And got the correct answer 32 Thanks for the hints and helping me out I was the only one in class who solved the difficult problem 🙏🙏🙏🙏 Love from India 🇮🇳🇮🇳
@shilpaanand719210 күн бұрын
Yo hello bro , I actually wanted to ask let say You have a problem 2p^8 + 3c^9 + 3r^2 How would you find it's minimum value Can we use am gm
@shilpaanand719210 күн бұрын
Could you please give some hint or solution here , I have to submit a problem similar to this Tommorow
@chanlyelee10 күн бұрын
What are the relation of p, c and r? If not, there is no minimum value.
@shilpaanand719210 күн бұрын
@@chanlyelee p,c,r>0
@shilpaanand719210 күн бұрын
Sir , actually this is the actual problem sir gave us Let p,q,r>0. Find the maximum value of ( (2p^8 + 2q^8 +3r^2)^2 ) / ( p^2. q^2 .r^3)
@shilpaanand719210 күн бұрын
I have tried everything implicit differentiation , am gm , maxima minima nothing seems to work
@gregevgeni186413 күн бұрын
Clever solution! Another approach. The key : 810=729+81=9³+9² x³-x²+810=0 x³+729-x²+81=0 x³+9³-(x²-9²)=0 (x+9)(x²-9x+81)-(x+9)(x-9)=0 (x+9)(x²-10x+90)=0 => ...
@SrisailamNavuluri18 күн бұрын
Alter 2025^2--8096=2025^2-90^2+4 =(45×45)^2-(45×2)^2+4 =45^2(45^2-4)+4=45^2×43×47 +4 =43×45×45×47 +4 =(43×47+2)^2 Answer is (43×47+2)=45^2-2^2+2=45^2-2=2025-2=2023
@chanlyelee11 күн бұрын
Thanks for sharing.
@SrisailamNavuluri18 күн бұрын
2025^2-8096=(45×45)^2-8100+4 =(45×45)^2-(2×45)^2+4 =(45^2)^2-2×45^2×2+2^2 =(45^2-2)^2 Answer is 45^2-2=2025-2=2023.
@chanlyelee11 күн бұрын
Thanks for sharing
@satyapalsingh442919 күн бұрын
Good problem on rectangular hyperbola
@mmm5141322 күн бұрын
so much different names just for titu's lemma! (bergstrom's inequality, engel's form, etc) I wonder if there are more
@jasonmudgarde28623 күн бұрын
Iterative process resulting in a fixed point?
@gregevgeni186423 күн бұрын
Amazing solutions! Thanks for sharing!
@chanlyelee10 күн бұрын
Glad you like them!
@andirijal903323 күн бұрын
I like Lagrang Multiplay
@喔耶哈哈24 күн бұрын
We probably can’t think of this solution in 9mins😮 I understand why they give us 1.5hours to solve a problem
@chanlyelee10 күн бұрын
I certainly spent more than 9 minutes to think of the answer.
@gregevgeni186424 күн бұрын
Beautiful solution! Thanks for sharing!
@chanlyelee10 күн бұрын
Thank you! Cheers!
@P1wer24 күн бұрын
stop with that stupid intro music
@chanlyelee24 күн бұрын
Any recommendation of any 'smart' intro music?
@andirijal903324 күн бұрын
What the about Lagrang multiplayer ?
@chanlyelee10 күн бұрын
possible
@raghvendrasingh128925 күн бұрын
J = 1000 - 3(x^4+2y^2+2y^2+4z^4) now product of x^4 , 2y^2 , 2y^2 , 4y^4 is 160000 ( constant) (because xyz = 10) hence their sum is minimum when they are equal in this case each of them is equal to = (160000)^(1/4) = 20 thier sum is 4× 20 = 80 J (max) = 1000 - 3×80 = 760 also x^4 = 2y^2 = 4z^4 = 20 gives x = 20^(1/4) y = √10 z = 5^(1/4) ❤ Happy new year (1+2+3+4+5+6+7+8+9)^2 sir 😊
@chanlyelee10 күн бұрын
happy new year~
@gregevgeni186425 күн бұрын
Nice solution! Thanks for sharing! And Happy New Year to you!🎉
@chanlyelee25 күн бұрын
Happy new year!!! Happy 2025!
@satyapalsingh442926 күн бұрын
Exp=2025^2-4*2025+4 =(2025-2)^2=2023^2 . So Sqrt =2023
@chanlyelee10 күн бұрын
Thanks for sharing
@ronbannon27 күн бұрын
I like the problem. Although I solved the problem using a different method, I think promoting the Cauchy-Schwarz Inequality is a good idea.
@chanlyelee10 күн бұрын
It's always good to have multiple ways to solve a problem! 👍
@ahmed_wh532827 күн бұрын
Thanks sir🙏🏿🔥 very good explanation
@chanlyelee10 күн бұрын
thanks!
@gregevgeni186428 күн бұрын
Nice solution! Thanks for sharing!
@chanlyelee10 күн бұрын
No problem 👍
@jameschan240429 күн бұрын
Hi how do you known what the function f(x) should be ?
@gregevgeni1864Ай бұрын
Nice! Thanks for sharing!
@chanlyeleeАй бұрын
Thanks for watching!
@gregevgeni1864Ай бұрын
Thanks for sharing!
@Alvin-kk7wdАй бұрын
excuse me , where did you get the idea for this problem,( to put 1/1-x back into the function)?
@ergunguler3981Ай бұрын
Harika bir video olmuş. Teşekkür ederim.
@tscan100Ай бұрын
And 2 digits will revert to 9 So, can I name this the tscan100 constant? They are all the same, Kaprekar's constant. Also, in the calculations you will also see Vortex math.