Пікірлер
@desireedbs
@desireedbs Ай бұрын
Absolutelu perfect! Thank you for explaining everything with so much ease. Subscribed!
@paulosah1317
@paulosah1317 2 ай бұрын
Thank you, Mia. You explained it in the simplest way possible.
@emem4836
@emem4836 2 ай бұрын
Hello .. I distributed my data to the same people for 3 different time periods. In each period, a certain number of questions are answered as part of the questionnaire. That is, in each period, a part is distributed. Accordingly, the answers to the questions of periods 2 and 3 represent missing data in period 1. What does this type of missing data represent and how do I handle it?
@prathameshwarude7642
@prathameshwarude7642 4 ай бұрын
Your voice is so soothing... Therapeutic...
@StatURCIP
@StatURCIP 4 ай бұрын
Excellent!
@johnspivack
@johnspivack 5 ай бұрын
Cute, but not helpful. The notation is poorly explained and leads to great confusion. Without explaining and demonstrating Rubin's difficult notation through clear and simple cases, everything else just goes to waste. For instance 'Missingness depends only on observed data' seems improperly defined or even like an instance of circular reasoning: Missingness means that the data is not observed, so which data you 'depend only on' itself depends on the missingness. That's not a clear definition. If you really want to help us, please focus on clear and thorough explanation, not on acting cute.
@shreyashree.d69
@shreyashree.d69 5 ай бұрын
Such a sweet and fun way to explain missingness! I was struggling to understand these and here you are, Savior!! Many thanks to You!! 😁♥
@vinc6966
@vinc6966 5 ай бұрын
Great explanation, thanks!
@zazakh7804
@zazakh7804 5 ай бұрын
Thank you so much you explained it great
@statswithmia
@statswithmia 5 ай бұрын
thank you!
@LeoDupuy
@LeoDupuy 6 ай бұрын
I thought missing at random did not rely on itself but rather other variables?
@11nul1nul
@11nul1nul 6 ай бұрын
You are a relief to listen to. Thank you!
@Islam101_Uganda
@Islam101_Uganda 8 ай бұрын
Thanks for the videos! I was waiting for R and stata codes for imputations
@anandshaw-ie3qk
@anandshaw-ie3qk 10 ай бұрын
it's amazing 🤘
@thetasworld
@thetasworld 10 ай бұрын
Thank you for this video. I am trying to perform the Little's test using python. Most solutions online weren't really useful, so was wondering if there is a step by step methodology somewhere (video, book etc.)
@trackstr1
@trackstr1 10 ай бұрын
your explanation and illustration are a perfect duo for clearing up this concept
@statswithmia
@statswithmia 10 ай бұрын
Thank you!
@DashingData66666
@DashingData66666 11 ай бұрын
hii mia lot's of love from Bharat❤‍🩹❤‍🩹❤‍🩹
@anis3702
@anis3702 Жыл бұрын
Perfect explanation!
@MedhaAnand-c4m
@MedhaAnand-c4m Жыл бұрын
Hi.. What if my dataset has categorical variables too? will this still work?
@MasterOfThermik
@MasterOfThermik 7 ай бұрын
Yes, if the data is normal distributed (vgl. Li 2013: 797).
@ryndm
@ryndm Жыл бұрын
Amazing explanation!! Thank you!!
@محمدالنوراني-خ2م
@محمدالنوراني-خ2م Жыл бұрын
hello Ms. Mia how can I contact you? I need help.
@Hkim321
@Hkim321 Жыл бұрын
thank you for the video. very easy to understand!
@statswithmia
@statswithmia Жыл бұрын
Thanks for the feedback!
@yasserali-uu2vd
@yasserali-uu2vd Жыл бұрын
Using this test gives me a completely right answer: the missing data is MCAR? I really love your learning style.
@statswithmia
@statswithmia Жыл бұрын
If you do not reject H0 (data are MCAR), this means that there is no evidence from your observed data to suggest that the missing data mechanism is MAR. However, you cannot be absolutely certain that the data is not MAR given some variable you haven't observed. You also cannot know if the data is actually MNAR. Hope that helps.
@shashankgupta3549
@shashankgupta3549 Жыл бұрын
I was looking for this hands-on, helpful in finding missing value patterns!
@statswithmia
@statswithmia Жыл бұрын
Glad it was helpful!
@RicardoVladimirWong
@RicardoVladimirWong Жыл бұрын
Amazing work, our entire quants team loved your explanations. Keep posting!
@shashankgupta3549
@shashankgupta3549 Жыл бұрын
Great explanation; please make more such videos!
@statswithmia
@statswithmia Жыл бұрын
thanks for the sweet comment!
@tin_sn-o2q
@tin_sn-o2q Жыл бұрын
this helped me prepare for my data science quiz, thank you very much
@statswithmia
@statswithmia Жыл бұрын
thanks!
@tryingtothinkofsomethingcool
@tryingtothinkofsomethingcool Жыл бұрын
This is brilliant teaching. Thank You.
@statswithmia
@statswithmia Жыл бұрын
Thank you!
@carlaprieto1310
@carlaprieto1310 Жыл бұрын
Thanks! I enjoyed this video; however, in R, the "naniar" package's function is only reliable (and only runs) when the dataset is equal or less than 30 variables. Other functions are similarly limited. Are you aware of any alternatives?
@statswithmia
@statswithmia Жыл бұрын
Thanks Carla for this great question. I'm aware of the LittleMCAR function in the BaylorEdPsych package which can handle up to 50 variables. However, this package was removed from the CRAN repository. To use it, you'll need to obtain it from the archive along with the mvnmle package which is required for the LittleMCAR function, as stated here: rdrr.io/cran/misty/man/na.test.html Hope this helps. If anyone has further suggestions for Carla, please leave a comment!
@carlaprieto1310
@carlaprieto1310 Жыл бұрын
@@statswithmia Thank you Mia!
@theresazickert8222
@theresazickert8222 Жыл бұрын
The na.test function of the Misty package can also do it, if I'm not mistaken. :)
@moulayyaakoub2931
@moulayyaakoub2931 Жыл бұрын
thanks
@Sathynne
@Sathynne Жыл бұрын
Yes! Just what I'm studying right now 😭😭, thank you
@Sathynne
@Sathynne Жыл бұрын
I'm so glad I found this channel
@statswithmia
@statswithmia Жыл бұрын
Thank you very much!
@apurvsingh2575
@apurvsingh2575 Жыл бұрын
Thank you for this amazing video!!
@statswithmia
@statswithmia Жыл бұрын
Thank you!
@newbie8051
@newbie8051 Жыл бұрын
Great examples, thank you !!!
@chonnipvpsk627
@chonnipvpsk627 2 жыл бұрын
YOU ARE A LIFE SAVER!
@chonnipvpsk627
@chonnipvpsk627 2 жыл бұрын
Big thanks!
@akhilghosh6384
@akhilghosh6384 2 жыл бұрын
great video! I was struggling with this concept but this video helped greatly!
@larissacury7714
@larissacury7714 2 жыл бұрын
Thank you VERY much!!! Is it correct to say that the complese obs approach is more realiable then the mean imputation approach given the beta values estimates on the last slide ? I mean, it seems to me that the complete cases betas are more likely to be closer to the multiple imputation ones
@larissacury7714
@larissacury7714 2 жыл бұрын
Wow!!! thank you SO SO MUCH! SO clear! In case NAs are missing due to the fact that participants didn't show up (for no specific reason, they simply didn't show up) on the test day, it would be a MCar case, right?
@statswithmia
@statswithmia Жыл бұрын
Hi Larissa, sorry for missing this comment/question earlier. I now have a video for a test for MCAR, which might be helpful for you: kzbin.info/www/bejne/nmqmq3WqgdWnlZo
@sam_thinks7591
@sam_thinks7591 2 жыл бұрын
Loved your voice TBH
@Ogunbiyi_Ibrahim
@Ogunbiyi_Ibrahim 2 жыл бұрын
Thank you Mia for this tutorial. I found it Insigthful.
@Ogunbiyi_Ibrahim
@Ogunbiyi_Ibrahim 2 жыл бұрын
Please you should definitely work on more videos. You are creating an impact with your teaching. Your approach is awesome and I love your voice. Thank you
@leowatson1589
@leowatson1589 2 жыл бұрын
Great video! I was wondering for the MAR case, how do we know for sure that the two groups can be separated into outside/inside pieces? If we didn't know beforehand Mr. Pickles removed more outside pieces than inside pieces, in theory there could have been another unknown property responsible for the differing probabilities of missingness correct? Would this still be considered MAR? E.g. Mr. Pickles only removed pieces that had dirt on them (and they just happened to be mostly outside pieces). Thanks!
@statswithmia
@statswithmia 2 жыл бұрын
Thank you for your question. You can't be sure that the MAR assumption holds, so it's important to explore potential departures from the MAR assumptions and see what impact it has on results through sensitivity analyses (something I didn't explore much in the video)
@bassamalsheakhly1889
@bassamalsheakhly1889 Жыл бұрын
@@statswithmia hi ,,, excuse me, can you offer me some help with my (survey data) ????? thank you
@anumzahra3537
@anumzahra3537 2 жыл бұрын
Love cats and love statistics! So obviously I subscribed 🥰
@christianz2401
@christianz2401 2 жыл бұрын
Was looking for a good explanation of missing data. Fell in love with your voice 💘.
@ankanabhattacharya1176
@ankanabhattacharya1176 2 жыл бұрын
Mia you're a genius at explaining. Why do you not have more followers :(
@mukeshkumar-kh2fh
@mukeshkumar-kh2fh 2 жыл бұрын
sir can we replace NaN value of column by mean in such a way that if other parameter value is in a particular range than find the mean and replace . Example..if column BMI has NaN value then if age of that person is 45 then we first find the mean BMI of people with a age of range 40 to 50 and replace with this.Similarly,for other person have NaN BMI ... then first check the age of that person and set an interval age and find mean and replace...
@shivam7304
@shivam7304 2 жыл бұрын
Nice Explaination !!! Keep the good work ...
@boredeggyolk7969
@boredeggyolk7969 2 жыл бұрын
First of all, thank you for existing. i really amazed by how calm and beautiful your voice is. second, please keep going T_T i really love your explanation. Instant subscribe!
@drarpitsaha9697
@drarpitsaha9697 2 жыл бұрын
Hello ,Mia ..its a great video , thanks a lot