Once i thought bigger cap - better, but my very wise teacher explained me, that bigger can do more but is slow to start, so those small guys are needed too.
@embeddedduniya777421 күн бұрын
Thank you
@anchalnishad73810 ай бұрын
Hlw sir meri protel 99SE mai schmetic mai Library show nhi kr rhi ... Toh schematics nhi bna pa rhi hu please help me.
@embeddedduniya77744 ай бұрын
just open that library from project file
@MujahidUrRASOOL-dp4li Жыл бұрын
Fly back or freewheeling diodes ak hi chez hn kya
@denniswroblewski213 Жыл бұрын
Finally I get it!
@embeddedduniya7774 Жыл бұрын
Thank you
@embeddedduniya7774 Жыл бұрын
Congratulations 😊
@vgyan7910 Жыл бұрын
Loved your video 😀😃😄
@meenalwaghule4378 Жыл бұрын
yess
@vgyan7910 Жыл бұрын
Understood Everything Very Simply😊😊😊
@vgyan7910 Жыл бұрын
😊😊😊 Loved it
@siyandamalefetse1345 Жыл бұрын
Can you give me the name of this book
@embeddedduniya777425 күн бұрын
David bell
@embeddedhwinterviewquest2 жыл бұрын
Good explanation
@vgyan79102 жыл бұрын
Very much good
@vgyan79102 жыл бұрын
Keep it up
@vgyan79102 жыл бұрын
Good work
@vgyan79102 жыл бұрын
Good explanation
@sudheerkumar59662 жыл бұрын
Very good
@embeddedduniya77742 жыл бұрын
Thank you very much
@RixtronixLAB2 жыл бұрын
Nice video, thanks :)
@embeddedduniya77742 жыл бұрын
Thanks
@vgyan79102 жыл бұрын
Good explanation
@embeddedduniya77742 жыл бұрын
Thank you
@reynaldo72122 жыл бұрын
ᑭяỖmo𝓼𝐦
@sridharchitta73213 жыл бұрын
The current (sinusoidal steady-state) in a capacitor is due to the resultant electric field E_net (resultant of the applied field and an opposing electric field, the fringe field). If the capacitance of the capacitor C is made large, then the fringe field does not build as fast as it would have if C were to be smaller. With a large C, the charge sprays on the plates do not result in developing a large voltage in a given interval of time as evident from the capacitor voltage-charge relation Q = CV. The fringe field is smaller and the net field consequently is greater. Therefore, at a fixed frequency, the current increases as the size of the capacitor is increased. The current also increases as the frequency is increased. So, we say it passes higher frequencies of applied voltage. If the frequency is made smaller, the fringe field builds very rapidly and in the limit when it is dc, it blocks the applied voltage. If a resistor R is connected to the capacitor then the resistor limited current is not enough to dump charge fast enough at such high frequencies and of sufficient quantity to produce any significant opposing fringe field. Therefore, for a given RC combination the output voltage picked across the resistor is able to reproduce the input signal with less attenuation. We say that the capacitor bypasses the high frequencies …..in reality, the electric field of the input voltage passes “through” the capacitor with almost no opposition. This makes the capacitor useful as a coupling capacitor for ac signals in amplifiers and also as an emitter bypass capacitor in transistors that will afford larger output swings by reducing the amount of ac signal feedback without affecting stabilising dc feedback. It is not possible in this post to discuss in more detail current in capacitor circuits and capacitive reactance. Electrostatics and circuits belong to one science not two. To learn the operation of circuits, Current and the conduction process, resistors and how discussing these topics makes it easier to understand the principle of superposition of potential which is a direct consequence of the principle of superposition applied to electric fields, watch these two videos i. kzbin.info/www/bejne/ioXXpWVul5aXj9E and ii. kzbin.info/www/bejne/bnO0fpKurJeFnNE The last frame of video 1 contains in the References articles and textbooks which discuss the unified approach. Sections 3.1 to 3.3 in Chapter 3 of textbook 4 discuss the operation of the RC coupling circuit with sequential diagrams using the unified approach. Also, Section 3.6 in Chapter 3 of textbook 4 discusses the operation of the bypass capacitor tied across the emitter resistor using the unified approach with the help of sequential diagrams in a transistorised common-emitter amplifier.