02 - Discrete probability recap, Naïve Bayes classification

  Рет қаралды 1,219

Alfredo Canziani (冷在)

Alfredo Canziani (冷在)

Күн бұрын

Пікірлер: 8
@НиколайНовичков-е1э
@НиколайНовичков-е1э 6 ай бұрын
Thank you, Alfredo!
@alfcnz
@alfcnz 6 ай бұрын
🥰🥰🥰
@wolpumba4099
@wolpumba4099 6 ай бұрын
*Summary* *Probability Recap:* * *[**0:00**]* *Degree of Belief:* Probability represents a degree of belief in a statement, not just true or false. * *[**0:00**]* *Propositions:* Lowercase letters (e.g., cavity) represent propositions (statements). Uppercase letters (e.g., Cavity) are random variables. * *[**5:15**]* *Full Joint Probability Distribution:* Represented as a table, it shows probabilities for all possible combinations of random variables. * *[**10:08**]* *Marginalization:* Calculating the probability of a subset of variables by summing over all possible values of the remaining variables. * *[**17:04**]* *Conditional Probability:* The probability of an event happening given that another event has already occurred. Calculated as the ratio of joint probability to the probability of the conditioning event. * *[**16:14**]* *Prior Probability:* The initial belief about an event before observing any evidence. * *[**16:40**]* *Posterior Probability:* Updated belief about an event after considering new evidence. *Naive Bayes Classification:* * *[**32:48**]* *Assumption:* Assumes features (effects) are conditionally independent given the class label (cause). This simplifies probability calculations. * *[**32:48**]* *Goal:* Predict the most likely class label given a set of observed features (evidence). * *[**44:04**]* *Steps:* * Calculate the joint probability of each class label and the observed features using the naive Bayes assumption. * Calculate the probability of the evidence (observed features) by summing the joint probabilities over all classes. * Calculate the posterior probability of each class label by dividing its joint probability by the probability of the evidence. * Choose the class label with the highest posterior probability as the prediction. * *[**36:24**]* *Applications:* * *Digit Recognition:* Classify handwritten digits based on pixel values as features. * *[**47:34**]* *Spam Filtering:* Classify emails as spam or ham based on the presence of specific words. * *[**33:56**]* *Limitations:* * *Naive Assumption:* The assumption of feature independence is often unrealistic in real-world data. * *[**42:11**]* *Data Sparsity:* Can struggle with unseen feature combinations if the training data is limited. *Next Steps:* * *[**1:05:58**]* *Parameter Estimation:* Learn the probabilities (parameters) of the model from training data. * *[**59:53**]* *Handling Underflow:* Use techniques like logarithms and softmax to prevent numerical underflow when multiplying small probabilities. i used gemini 1.5 pro to summarize the transcript
@alfcnz
@alfcnz 6 ай бұрын
They are a bit off. The first two titles should not be simultaneous nor at the very beginning. Similarly, Gemini thinks that the first two titles of Naïve Bayse Classification are also simultaneous. I can see, though, how these could be helpful, if refined a bit.
@datagigs5478
@datagigs5478 6 ай бұрын
Do you cover the whole course on KZbin ?
@alfcnz
@alfcnz 6 ай бұрын
Please, check out the first video of the playlist, where an overview of the course in provided. kzbin.info/www/bejne/faqunYCZqNFqaNk
@joeeeee8738
@joeeeee8738 6 ай бұрын
What software do you use to present? Looks great!
@alfcnz
@alfcnz 6 ай бұрын
Microsoft PowerPoint 🙃
03 - Naïve Bayes parameters estimation and Laplace smoothing
1:00:36
Alfredo Canziani (冷在)
Рет қаралды 1,1 М.
01 - Course first part recap, Naïve Bayes intro
1:05:08
Alfredo Canziani (冷在)
Рет қаралды 3,6 М.
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
04 - Binary classifier evaluation, binary Perceptron
56:05
Alfredo Canziani (冷在)
Рет қаралды 843
Naive Bayes, Clearly Explained!!!
15:12
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН
05 - Classification, an energy perspective - Notation and introduction
50:30
Alfredo Canziani (冷在)
Рет қаралды 4,9 М.
06 - Optimisation and gradient ascent
58:59
Alfredo Canziani (冷在)
Рет қаралды 840
10. Continuous Bayes' Rule; Derived Distributions
48:53
MIT OpenCourseWare
Рет қаралды 105 М.
05 - Multi-class perceptron, binary and multi-class logistic regression
59:12
Alfredo Canziani (冷在)
Рет қаралды 899
How Bayes Theorem works
25:09
Brandon Rohrer
Рет қаралды 552 М.
Probability vs. Likelihood ... MADE EASY!!!
7:31
Learn Statistics with Brian
Рет қаралды 41 М.
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН