06L - Latent variable EBMs for structured prediction

  Рет қаралды 9,915

Alfredo Canziani (冷在)

Alfredo Canziani (冷在)

Күн бұрын

Пікірлер: 22
@cambridgebreaths3581
@cambridgebreaths3581 3 жыл бұрын
Wonderful, more and more🙃. Many thanks, Alfredo!!!
@alfcnz
@alfcnz 3 жыл бұрын
Haha, I don't see the end 😭🤣😭🤣
@muhammadharris4470
@muhammadharris4470 3 ай бұрын
Great resource, Text needs to have a background to be eligible
@alfcnz
@alfcnz 3 ай бұрын
Thanks! 😀 That’s why we provide the slides 😊
@geekyrahuliitm
@geekyrahuliitm 3 жыл бұрын
Thanks for making these videos publically available. :-)
@alfcnz
@alfcnz 3 жыл бұрын
😇😇😇
@ShihgianLee
@ShihgianLee 3 жыл бұрын
Thank you for uploading this Alf! This wasn't in the 2020. After watching the 2021 EBM lecture, I feel that everything is about pushing down and up energy. This clarifies it! The interpolation vs extrapolation in high dimension space is interesting. It is like a detective work to deduce result in high dimensional space 😀
@alfcnz
@alfcnz 3 жыл бұрын
You're welcome 😊😊😊 Next semester there'll be more material on energy stuff. 🔋🔋🔋
@ShihgianLee
@ShihgianLee 3 жыл бұрын
🥳🥳🥳
@siddhantrai7529
@siddhantrai7529 3 жыл бұрын
Hi Alfredo, Just a small doubt at 1:11:30 (at end of factor graph), when Yann mentioned that the algo is dp and it is in linear time. But the way he explained the algo, it was more like Dijkstras greedy search, which is O(V log E). As far as I remember, Dp based shortest path that work on network exhaust ively, have O(VE) time complexity, like bellman-ford. Please do correct me if I am wrong. I know this isn't of much concern here, but it bugged me a bit, thus wanted to clarify. Thank you.
@666zhang666
@666zhang666 2 жыл бұрын
In a GAN part: How do we know that Gen(z) when we learn it to produce 'y^hat' with lowest possible energy will always produce 'wrong sample'? (so sample for which we want to increase energy). Maybe it can happen that it will produce something correct?
@sebastianpinedaarango8239
@sebastianpinedaarango8239 3 жыл бұрын
Thanks for the video. I really like it. Unfortunately, the background does not help to read the equations sometimes. I would suggest to look for another approach to increase the contrast between the font and the background.
@alfcnz
@alfcnz 3 жыл бұрын
Usually students follow along with the PDF version of the slides, so I thought it was not a big problem. But yeah, I've got your point. I've been constantly experimenting new techniques, some work better than others.
@shrey-jasuja
@shrey-jasuja Жыл бұрын
I have a doubt, In previous video Yann explained that while training EBM in contrastive learning methods with joint embedding methods, we take negative samples in such a way that they are very different so that the system learns better, but in Graph transformer networks we took the best possible answer for contrastive learning. So how does it works?
@alfcnz
@alfcnz Жыл бұрын
You need to add some time stamps or it’s going to be impossible for me to address your question.
@shrey-jasuja
@shrey-jasuja Жыл бұрын
@@alfcnz I am talking about the discussion between the time instants 1:39:00 and 1:43:00
@-mwolf
@-mwolf 2 жыл бұрын
What does "averaging the weights over time" mean exactly? at 43:40
@alfcnz
@alfcnz 2 жыл бұрын
w_{t} = a₁ w_{t-1} + a₂ w_{t-2} + a₃ w_{t-3} + …
@НиколайНовичков-е1э
@НиколайНовичков-е1э 3 жыл бұрын
Thank you, Alfredo :)
@alfcnz
@alfcnz 3 жыл бұрын
You're welcome 😁
@oguzhanercan4701
@oguzhanercan4701 2 жыл бұрын
56:35 ,,,, hi from Turkey :)
@alfcnz
@alfcnz 2 жыл бұрын
👀👀👀
05L - Joint embedding method and latent variable energy based models (LV-EBMs)
1:51:31
Alfredo Canziani (冷在)
Рет қаралды 24 М.
08L - Self-supervised learning and variational inference
1:54:44
Alfredo Canziani (冷在)
Рет қаралды 9 М.
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
05.1 - Latent Variable Energy Based Models (LV-EBMs), inference
1:01:05
Alfredo Canziani (冷在)
Рет қаралды 17 М.
02L - Modules and architectures
1:42:27
Alfredo Canziani (冷在)
Рет қаралды 23 М.
06 - Latent Variable Energy Based Models (LV-EBMs), training
1:04:49
Alfredo Canziani (冷在)
Рет қаралды 10 М.
07L - PCA, AE, K-means, Gaussian mixture model, sparse coding, and intuitive VAE
1:54:23
Wavelets: a mathematical microscope
34:29
Artem Kirsanov
Рет қаралды 654 М.
01L - Gradient descent and the backpropagation algorithm
1:51:04
Alfredo Canziani (冷在)
Рет қаралды 58 М.
11. Introduction to Machine Learning
51:31
MIT OpenCourseWare
Рет қаралды 1,6 МЛН
14L - Lagrangian backpropagation, final project winners, and Q&A session
2:12:36
Alfredo Canziani (冷在)
Рет қаралды 6 М.
Speculations on Test-Time Scaling (o1)
47:56
Sasha Rush 🤗
Рет қаралды 17 М.