2.2 Convex Sets -- Examples

  Рет қаралды 6,250

Constantine Caramanis

Constantine Caramanis

Күн бұрын

Пікірлер: 10
@petere9383
@petere9383 Жыл бұрын
Was there a previous course? He began talking about probability distributions and I don't think I have heard that previously
@andrewmeowmeow
@andrewmeowmeow 3 жыл бұрын
For copositive matrices exercise. Q1: intuitively, copositive matrices (M) are smaller (subspace) than PSD matrices (S) because x^TSx >= 0 for any x in R^n. But x^TMx >= 0 only for x in R^n_+. Q2: It is similar to the proof of PSD matrices are convex set. Hi Prof Caramanis, I am not familiar with the definition of "given support", and thus, I didn't finish the exercise for "the set of moments of distribution with given support". Could you explain the jargon "support on C" meaning in 6:46? Thanks!
@constantine.caramanis
@constantine.caramanis 3 жыл бұрын
By "moments with a given support" i mean that these are moments of a distribution, where the distribution only puts weight on the set C. So if C is the discrete points {-1,1}, then we are talking about the set of moments of distributions that put weight only on the two points -1 and 1.
@andrewmeowmeow
@andrewmeowmeow 3 жыл бұрын
@@constantine.caramanis Thank you for your explanation!
@mehmetfatihsahin9021
@mehmetfatihsahin9021 3 жыл бұрын
Hi Prof Caramanis, do you plan to release any exercise sets to supplement this lecture series? Thanks!
@constantine.caramanis
@constantine.caramanis 3 жыл бұрын
I'd like to at some point, but no plans to do that in the very immediate future, unfortunately...
@m2rahman
@m2rahman 3 жыл бұрын
Hi Prof Caramanis, in this video you defined the dot product as v1^T * M * v1. Is this based on a general formula of inner product of two matrices? thanks!
@m2rahman
@m2rahman 3 жыл бұрын
Are you using, for two matrices A, B, = Trace(A^T * B) as the inner product formula? thanks
@constantine.caramanis
@constantine.caramanis 3 жыл бұрын
Yes, exactly. I am using the fact that the inner product of two matrices A and B of the same size is = \sum_{ij} A_ij B_ij, which also is equivalent to the trace formula you gave.
@m2rahman
@m2rahman 3 жыл бұрын
@@constantine.caramanis thanks for clarifying! it makes sense.
2.3 Convex Functions
17:17
Constantine Caramanis
Рет қаралды 6 М.
2.1 Convex Sets: Definitions
27:04
Constantine Caramanis
Рет қаралды 12 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 40 МЛН
Separating Hyperplanes
20:41
Constantine Caramanis
Рет қаралды 6 М.
2.6 Optimality Conditions and Projection
16:49
Constantine Caramanis
Рет қаралды 4,5 М.
5.1 Proximal and Projected Gradient Descent
35:04
Constantine Caramanis
Рет қаралды 20 М.
2.5 Optimality Conditions for Convex Optimization
21:58
Constantine Caramanis
Рет қаралды 8 М.
2.4 Equivalence of Convex Function Definitions
29:17
Constantine Caramanis
Рет қаралды 5 М.
Separation I: Strong separation of point and set
13:30
Sebastian Banert
Рет қаралды 1,5 М.
4.1 Oracle Lower Bounds
20:34
Constantine Caramanis
Рет қаралды 2,9 М.
Lecture 2 | Convex Sets | Convex Optimization by Dr. Ahmad Bazzi
2:08:02
Convex Sets - Pt 1
24:31
Nam Nguyen
Рет қаралды 20 М.