i legit dont know wtf they doing,but m happy for them tho.
@سبحاناللهالحمدلله-ق1ه4ف3 жыл бұрын
solving integrals
@CollDott3 жыл бұрын
Was a party!🧐
@jacksoncasper84283 жыл бұрын
That skill is called integration. Essentially, you can imagine a line on a graph, and they use calculus skills to find the area between the line and the y=0 and between the x values given on that giant swirly S. The line on the graph is defined by the equation after that big S
@jaranis92733 жыл бұрын
@@jacksoncasper8428 I really don't know all that. Idk if i'm dumb or my school is bad. I'm a highschool student btw.
@DavidLeAsdf3 жыл бұрын
@@jaranis9273 it's part of calculus, which you don't have to take in high school i think
@anorangewithacapybaraunder23704 жыл бұрын
Those dusters are hopeless
@ligmaenigma64984 жыл бұрын
Lmao "there's still two more questions headass" - 5:20
@johnmcsudden31763 жыл бұрын
LMAO
@YorangeJuice3 жыл бұрын
I’ve only taken high school differential calculus and I’m actually so excited to (hopefully) one day be able to do stuff like this 👍
@diondredunigan52823 жыл бұрын
Did your course not teach integral calculus also?
@YorangeJuice3 жыл бұрын
@@diondredunigan5282 no just differential. how it works here (or at my high school at least) is we have the 1 highest level math course in the last year of high school, and that single course is split between differential calculus and an intro to linear algebra
@mangomanlassi77792 жыл бұрын
@INERT same here in Australia we have to do differential calculus, integration, differential equations and vectors
@ガアラ-h3h Жыл бұрын
@@mangomanlassi7779well your integrals are way easier than this tho
@aahanimation3 жыл бұрын
the cameraman and his friends are the embodiment of my reaction to this video
@mohammadalkousa2856 Жыл бұрын
Recently it was published a book about MIT integration bee, under the title " MIT Integration Bee, Solutions of Qualifying Tests from 2010 to 2023" You can simply find it!
@VedantKumud233 жыл бұрын
Wow thanks for 100k views everyone...honestly didn't expect this to be so popular!
@rainhopper86943 жыл бұрын
head butt
@Junta573 жыл бұрын
“Best out of 5 and he has 2, that means he won!!!” The real math genius in this video 5:20
@martaecala3 жыл бұрын
he thought the one on the right won
@huntersingle Жыл бұрын
The one on the right won it all. Hurt so much
@matron99364 жыл бұрын
Really hope one day I’ll participate this seems like so much fun!
@iliveinyourwalls51933 жыл бұрын
Seems like the definition of "fun" varies a lot between people...
@mrjazz25703 жыл бұрын
Funny :)
@avacdoos31013 жыл бұрын
@@iliveinyourwalls5193 definitely
@No_BS_policy3 жыл бұрын
The integral of x squared dx from zero to one >>> having solved this in one hour made me feel like I'm a genius.
@xinpingdonohoe39783 жыл бұрын
Crikey
@razlotan75043 жыл бұрын
Explanation for Tiebreaker: denote by I_k the integral of (lnx)^k with these limits (we will insert k=2020 at the end) plug in u=log(x) the integral transforms to -infinity to 0 of u^k*e^u integrate by parts differentiating the u^k part, you will get a similar integral but a factor of k comes out and the power decreases to k-1, this gives us a recursion formula: I_k=-k*I_(k-1), I_1=-1 can be checked and thus, I_k=(-1)^k*k! so I_2020=2020!
@Capybaraking763 жыл бұрын
This is kinda hard for me to understand but what do I know I’m only in calc 1, kudos to you man, u should put this on katex so it’s easier to read, really appreciate your work in making this more easy to understand
@rajeevsharma16713 жыл бұрын
Gamma function
@Teracosa3 жыл бұрын
Why does substituting u=log(x) entail that transformation?
@xinpingdonohoe39783 жыл бұрын
@@Teracosa it's a u-substitution that changes the expression and bounds u=log(x) e^u=x e^u du = dx log(0)=-∞ log(1)=0 So then log(x)^2020 dx from 0 to 1 becomes log(e^u)^2020 e^u du = u^2020 e^u du from -∞ to 0
@Andrew-io9cb2 жыл бұрын
@@xinpingdonohoe3978 I don't understand why log(0) = -infinity and instead is not undefined. Is it undefined as it heads toward infinity? Would log(-1) = -infinity as well?
@xinpingdonohoe39783 жыл бұрын
I feel slightly more confident knowing that I also got 1/2, and it was correct. So much integrating by parts, but worth it.
@dhruvshah83104 жыл бұрын
Woahhhhh! These sums are so cool ! The standard of integration bee has gone to another level in the recent years !! Wow ! Thank you for uploading this video sir, there are very less videos of integration bee on KZbin.
@nedimayvaz1703 жыл бұрын
It is so painful to watch people tryna write on those hella dirty blackboards. Why dont they just clean them with wet towels and dry them afterwards?
@FF-pv7ht3 жыл бұрын
takes too long because water film sticks on the boards which makes them "unusable" for as long as the water dries, it will chocke out the chalk making whatever you write extremely thin and hard too see
@yinvara98763 жыл бұрын
@@FF-pv7htwhy not just do it at the end of the day then?
@KennTollens3 жыл бұрын
They should have digital boards at Berkeley, but they like to live in 1970's
@martaecala3 жыл бұрын
@@yinvara9876 what tells you they don’t?
@yinvara98763 жыл бұрын
@@martaecala Nothing. Yet I can't assume that they do, especially given their condition in the video
@FedorMachida Жыл бұрын
Those two guys were really good and we had an exciting finish.
@opressedrage3 жыл бұрын
they spend the 3 first minutes just on writing the integral expression :')
@XDDDDD16292 жыл бұрын
En sí el ejercicio es largo y algo molesto de escribir, pero tiene un truco para desarrollarlo rápidamente
@metuberob Жыл бұрын
holy dorkfest ... getting your math fix ... and all this to earn a cap ... that's so rewarding
@barryallen767Ай бұрын
Some people don't care about money as much and put their education on top because they find it fun.
@yashrawat94093 жыл бұрын
Ok this was funny so I am adding it Jee Aspirants: Ye me kar leta hun aap jake dream 11 par team bana lo
@bipulkumar66373 жыл бұрын
lol you are right
@mrmartinwatson14 жыл бұрын
all i see are are near sighted people competing to see who's glasses are better.
@YorangeJuice3 жыл бұрын
Amazing! This looks so fun, I’m going on to uni later this year, hopefully they have stuff like this where I’m going
@samholt91772 жыл бұрын
Did they have stuff like that?
@abhishekbhor232 жыл бұрын
How' s uni going now?
@ishaanparikh4853 жыл бұрын
The first question isn't that difficult once you break it up into smaller integrals
@JoseFisQuiMat3 жыл бұрын
Excelentísimo, por el vídeo cómo en mis tiempos. SALUDOS,!!!!!!
@ivanmiguel85344 жыл бұрын
Estoy eguro de no ser el unico que está aquí por cosa de broncano
@assanaliaidarkhan51443 жыл бұрын
Legends say that guy in a gray shirt still walks back and forth
@GameInOne3 жыл бұрын
That black board is literally white
@in_ashish3 жыл бұрын
Indians are everywhere. Omni present👏
@slasherflores51173 жыл бұрын
I passed my calculus subject but I dunno if i can solve what are they solving XD
@IndependentMind1153 жыл бұрын
They're allowed to LOOK at their competitor's board???!?!?!??! Why??????
@rhvc27343 жыл бұрын
With that kind of blackboard, and that angle. I don't think It'll be easy to read what the other guy wrote. Edit: by blackboard, I mean, dusty blackboard, full of chalk dust
@jeffpape65193 жыл бұрын
I can smell the chalk through my screen lol
@creepycritterkaden93382 жыл бұрын
20:15 i love how this guy just holds up his brown bag XD
@dukeyin11113 жыл бұрын
dang... that integral sure is a monster
@ahmeduljanabi79213 жыл бұрын
We studied mathematics in Iraqi universities at a top level..
@benlaurent31023 жыл бұрын
Didn’t ask
@historyandculture5623 жыл бұрын
But I think students at top American universities are the best in the world. A disproportionate share of the top innovators of the world come from like 10 American universities.
@iliveinyourwalls51933 жыл бұрын
@@historyandculture562 Brain drain and picking Americans for innovation in priority thus they have more funds and a higher advantage.
@전민제-e7g3 жыл бұрын
Before watch this video: oh, I'm interested in integral. I want to see this video. When I see first problem: ?
@thephysicistcuber1754 жыл бұрын
now I really wanna see what problem 2 was
@ninadmunshi28794 жыл бұрын
@ThePhysicistCuber Hello! I wrote the problems for this bee. The second problem in the finals round was x^2/(x^4-x^2+1) over R
@yumnambonnymangang85343 жыл бұрын
Me: still struggling to solve first linear degree
@vedantchimmalgi4634 жыл бұрын
dude most of the participants are indian. something as an indian i am extremely proud of... hope one day ill participate...
@farhaanshaikh28734 жыл бұрын
Bruh... Did u even see what that indian(on left) was doing?? He had no idea of wtf is to be done... In Q1 he is making a hopeless triangle that we learn in 10th grade and in Q4:wtf is he even trying to do with those random graphs that he made. U can easily hear ppl making fun of him for trying to act like a smarty pants... This is what makes me feel bad about Indians(mind u NOT ALL) ,empty vessels that make alot of noise. I'm sry to day this.. I myself am an Indian but not proud of how ppl behave as Indians.
@aarohansharma45513 жыл бұрын
@@farhaanshaikh2873 dude, at that point if all of them are in MIT, its sufficient to say that most would've been able to solve, given enough time. But what matters is the ability to remain calm in such pressure and time crunch, AND the sudden striking power when the solution just comes to your mind
@____-gy5mq3 жыл бұрын
@1 2 same
@avacdoos31013 жыл бұрын
@1 2 as you should lol!
@debanshideb25772 жыл бұрын
@1 2 lmao
@diondredunigan52823 жыл бұрын
these make the ap calc exam look like preschool
@vinaysr66173 жыл бұрын
I love how at the last the winner was showing the method
@envicius4 жыл бұрын
Like si vienes por EL PACHANGAS
@RespectThePouch10283 жыл бұрын
Oh wow my favorite professor in the background :o
@suryanshsiddhu0072 жыл бұрын
Indians are rocking everywhere 🤘🤘🤘
@BarriosGroupie4 жыл бұрын
If you don't wear glasses, you haven't got a chance.
@Pythonist_01 Жыл бұрын
I can't see the question clearly 😭
@sonictheone45682 жыл бұрын
What was the answer to problem 3??
@tarunkumar55694 жыл бұрын
Tiebreaker was a pretty easy one!!
@rishipoonia73743 жыл бұрын
Nope, it just looked simple, it was pretty long, if u would do it in a legit way atleast 2 pages will be filled. That guy just guessed it, coz there was a pattern
@suyashtyagi40443 жыл бұрын
@@rishipoonia7374 but why is there a need for that.?cuz after writing first few ones it just becomes obvious ,and it's meant to be solved fast as well
@avacdoos31013 жыл бұрын
Mannnnnn i love this video!
@NihalSaokar20062 жыл бұрын
who won the point for Qn 3?
@lemniscatepower3153 Жыл бұрын
What he's done in question 1, first he replaces x to -x then add the two integral leaving behind only upper part of the integral and by symmetry he then turns down the limits to 0 to infinite and cancel the 2 both side, and then he just left with one integral which is of the type a^-x with limits 0 to infinite where "a" is 2020 and by logarithm method he got the answer
@lemniscatepower3153 Жыл бұрын
I also got an answer for 5 question, in this ques we have to perform integration by parts 2 times and then Laplace transform
@lemniscatepower3153 Жыл бұрын
Sixth question is on the gamma function, so it's easy
@wada-20012 жыл бұрын
How can i Take part of this class
@JuanPerez-hr9qy Жыл бұрын
Solo quiero ser uno de ellos
@calde6073 жыл бұрын
love the commentary
@tanzidkarim95933 жыл бұрын
can anyone explain how did he solve the last math?
@adarshrajshrivastava11133 жыл бұрын
You just need to apply integration by parts, take u=1 and v=log^2020(x) One can generalise this as If I(n) = integration from 0 to 1 log^n(x) then I(n)= -n I(n-1) hence I(n) = (-1)^n n! .
@David-f9z8e3 жыл бұрын
@@adarshrajshrivastava1113 How do I even get started on learning all of this?
@mardokaymosazghi96723 жыл бұрын
@@David-f9z8e start small, learn ap calc, and then start doing more harder problems
@irfanalqindi53224 жыл бұрын
Is this math department?
@pasavant3 жыл бұрын
Pie are not square, pie are round. Cornbread are square.
@parragoriouse01383 жыл бұрын
you could have a square pie if you dont like them round ones
@duf23 жыл бұрын
Everything is possible when it comes to pies
@yks-we1ib3 жыл бұрын
FGNKFGK WHY IS IT SO FUN
@itaycohen76194 жыл бұрын
Can someone explain how did he solve the first one ?
@calcul8er2054 жыл бұрын
Itay Cohen to generalise this problem let a be a constant, e(x) be an even function and o(x) be an odd function. The integral of [e(x)]/{1+a^[o(x)]} dx from -b to b equals the integral of e(x) dx from 0 to b. To prove this substitute u=-x into the original integral, simplify by using the properties of even and odd functions, multiply top and bottom by a^[o(u)], replace u with x (it’s a dummy variable), then add this to the original integral.
@MrCrackheadst4 жыл бұрын
@@calcul8er205 of course. How did I not see that 🥴
@AlFredo-sx2yy3 жыл бұрын
@@MrCrackheadst im surprised u didnt see that, its trivial :v
@andynightsky4 жыл бұрын
Phenomenal work
@kemalm93833 жыл бұрын
After covid teachers are looking to bring there students back to the classrooms. 🤔🤷🏽♂️✌🏽👍🏻🎓🎉
@kelvinella4 жыл бұрын
How can you do that problem 3 in like one second in your head??
@jr137634 жыл бұрын
They probably solved that problem before and memorized the answer to it.
@ninadmunshi28794 жыл бұрын
@@jr13763 Neither contestant had seen the problem before. They guessed that given the complicated form of the functions resembling inverses of each other that integral had to be the area of this elbow shape: math.stackexchange.com/questions/3732846/uc-berkeley-integral-problem-show-that-int-02-pi-frac-min-sin-x-cos-x
@SaiKiran-fd3gq4 жыл бұрын
It is a trick ,the given integral contains the sum of a function and its inverse.Such a sum when evaluated between the point of intersection of both the functions equals twice the area of the trapezium formed by (1,1) ,(2,2) ,(1,0) and (2,0) .
@aarohansharma45513 жыл бұрын
@@jr13763 its not JEE question paper or CBSE boards paper that you memorize and get full marks
@sapito1693 жыл бұрын
indians and asians need another category is not fair
@Loquendero20012 жыл бұрын
Yo hice mi primera integral a mis 2 años
@alexcampbell9983 жыл бұрын
shout out mr brookner he taught me abstract algebra
@BlitzCraftMC3 жыл бұрын
wat is that first integral!!!!
@shreyasp32874 жыл бұрын
Few no jee comparison comments
@anshulraina18193 жыл бұрын
jee aint hasd as this one
@vvksailor3 жыл бұрын
Mit bee wale me bhar bhar ke the…
@lambda6533 жыл бұрын
How old are you guys?
@nana-en5fv3 жыл бұрын
i dont even know a single thing they did ;-;
@KydenBufect3 жыл бұрын
That's ok most of the people in the audience didn't know either.
@ocayaro3 жыл бұрын
You couldn’t print the question for them? That’s idiotic. The other kid could see properly and wasted a lot of time.
@melborja5152 Жыл бұрын
the problem is too high
@kelvinella4 жыл бұрын
the tie breaker is the easiest LOL, done in like 15 seconds
@frosty86554 жыл бұрын
i dont think so
@kelvinella4 жыл бұрын
@@frosty8655 let -t=log(x), then it becomes gamma(2021). simple
@neelmodi57913 жыл бұрын
@@kelvinella The tiebreaker takes 2 seconds. Simply recognize the given integral as the definition of (-1)^n Gamma(n+1) for n = 2020. (partly joking lol)
@BeoFistTie013 жыл бұрын
4:58 WTF 😳
@VedantKumud233 жыл бұрын
sheeeeeesh
@alisiyags53494 жыл бұрын
برافو عليك يااخي👍👍
@turgaycoruhlu4648 Жыл бұрын
Solutions?
@Rohit-bk6bc Жыл бұрын
Let's go rohit gang
@सागरबड़थ्वाल2 жыл бұрын
He is Indian
@rsk4u2 жыл бұрын
Bro all these questions are mid compared to jee advanced
@méssíah69-Gawdmode3 жыл бұрын
Competition Competition Everywhere 😭😭
@georgez59913 жыл бұрын
where does the denominator go for q1?
@neelmodi57913 жыл бұрын
Call the integral A. Do a substitution x -> -x in the given form of A. This leads to an almost identical form for A, except the exponent in the denominator picks up a minus sign. Now add these two nearly identical expressions for A to get 2A = integral from -infty to infty of sum of two nearly identical fractions. Now, if you factor out 2020^(-|x|) from the fractions, it turns out that the remaining two nearly identical fractions sum to unity (exactly one). You can check this by simply forming a common denominator and directly adding them. In general, the following identity holds: 1/(1 + p) + 1/(1 + p^{-1}) = 1
@georgez59913 жыл бұрын
@@neelmodi5791 thank u so much!
@shishir26392 жыл бұрын
So this is what needed to survive on earth 👍
@suharto_lkwwalangitan40244 жыл бұрын
yup..
@all-roundtech48724 жыл бұрын
That smart guy seems to be Indian
@VedantKumud234 жыл бұрын
the best of the best
@ano_learn3 жыл бұрын
Why do you think he is Indian? Are Indians very good mathematicians?
@philipe133114 жыл бұрын
Como eu vim parar aqui kkkk
@maximilianospillmann33413 жыл бұрын
If u say headass in college
@읭읭-k5r3 жыл бұрын
무슨 대한민국 이과 고삼이 푸는문제를 신나게 풀고있노
@itsconfidential91924 жыл бұрын
I could solve only 3 of these nice question
@danielsuryakusuma92324 жыл бұрын
go bears
@Henriiyy2 жыл бұрын
Wow! I have no idea how he solved the first integral.
@steelwarrior1053 жыл бұрын
Frickin mathematicians...
@frosty86554 жыл бұрын
which semester are these students in ?
@VedantKumud234 жыл бұрын
They were both second semester freshmen at berkeley at this point in time
@pxlbits64424 жыл бұрын
@@VedantKumud23 for 2nd semester that's hardcore....
@RogerMentol Жыл бұрын
So it's all about science 😅
@fumanchu81703 жыл бұрын
I only see Indians and Chinese
@punyagupta30717 ай бұрын
@5:57 biomajor -> DNA🤣🤣
@suryakantamishra46562 жыл бұрын
I solved in 2 mins and ans is 0
@JSSTyger4 жыл бұрын
How the hell did the white guy beat all those asians?
@jennychen21964 жыл бұрын
Hadyn's a smart guy
@nadimpallinaveen42004 жыл бұрын
Exactly!!!
@FfFf-gi1hd3 жыл бұрын
He beat them cause he’s smart. What a stupid comment, that’s honestly kinda racist
@arvindchander9674 жыл бұрын
Whats the trick behind the 3rd one?
@VedantKumud234 жыл бұрын
smth to do with reflecting/creating a rectangle whose area is easy to solve for iirc