normally I never comment on videos but it's one of the best explanations of a stat topic, I am not from math background but you made me understand this topic in such an easy way thankyou
@easyvazquez8 жыл бұрын
Thank you for providing the short cut for checking VIF in SAS, and you also did an excellent job in explaining the critical VIF factor.
@bhanurekha65105 жыл бұрын
thanks for an explanation .. Please don't stop posting
@kweweli78218 жыл бұрын
Excellence explanation on the table, I now fully understand VIF.
@akramhossain95765 жыл бұрын
Excellent!
@bhanurekha65105 жыл бұрын
nice explanation
@mohammedtaher37176 жыл бұрын
amazing explanation, sir if you could make a video on calculating the correlation coefficient - R^2 of more than three independent variables it would be helpful. thank you again
@nitindamle53806 жыл бұрын
It's very good sir Kindly make video on ridge and lasso regression
@AnTweeedz4 жыл бұрын
Nice
@214vinod7 жыл бұрын
Hi, While removing variables due to high VIF's , my P value for intercept is increasing and reached around 0.60. how to deal with this situation, when removing variables on the basis of P value. Learning a lot. Thanks for videos.
@LearnanalyticsIn7 жыл бұрын
P values of intercept can be ignored, concentrate on the estimates (of independent variables) only
@110Turab5 жыл бұрын
Thanks you
@sajjadhussain51136 жыл бұрын
Thanks alot
@FantasmaAzulDark8 жыл бұрын
Thanks! Excellent!
@sumitasarma61879 жыл бұрын
How to check for multicollinearity with interaction terms in a regression?
@LearnanalyticsIn9 жыл бұрын
Sumita Sarma Interaction terms are considered derived variables. Collinearity will be checked as usual using correlations or VIF. Typically if we use a derived or an interaction variables, we might drop the original variables to prevent collinearity.