I think that because RandomForest is a classification algorithm so classification metrics such as accuracy, roc&auc , confusion metrics can be used to assess the model.
@johnpuskin4634 жыл бұрын
Thank you for your good explanations and experience based valuable suggestions. You claimed that Random Forest based segmentation is better than that of SVM. Do you have a chance to test XGBoost? If no then I strongly suggest it.
@DigitalSreeni4 жыл бұрын
Yes, I did experiment with a few boosting techniques including XGBoost. It is a good approach but the accuracy depends on hyperparameters. I thought I recorded a video on this topic but apparently I haven't. Thanks for the suggestion, I am sure the viewers of this channel would like to know more about it.
@SaronAbate-b7t Жыл бұрын
Dear. I do appreciate your lecturing style. I have two questions- "How to measure the performance of Random Forest?". What metrics are used to compare it to other algorithms?
@idrisseahamadiabdallah7669 Жыл бұрын
I think that because RandomForest is a classification algorithm so classification metrics such as accuracy, roc&auc , confusion metrics can be used to assess the model.
@mesfinabate5952 Жыл бұрын
How do we know the pixel value?
@surajshah43174 жыл бұрын
dear sir .. number of decison tree are equal to number of input features ?
@yontenjamtsho43153 жыл бұрын
Is it necessary to create a bootstrap dataset?
@AgriculturaDigital4 жыл бұрын
Your videos is very good one. Thanks very much man. Do you give the permission to use your exemples and code to recorde a Portuguese videos?
@DigitalSreeni4 жыл бұрын
If you want to add Portuguese voice over please let me know. I guess, it can help some users.
@AgriculturaDigital4 жыл бұрын
Python for Microscopists by Sreeni . No no...The idea is record my own video. Just use your code exemples.
@williamcabisca50583 жыл бұрын
Awesome info
@boooringlearning3 жыл бұрын
great video!
@DigitalSreeni3 жыл бұрын
Thanks
@lee-ちゃん9 ай бұрын
so i have watched your videos from 1 upto thus far, you have not shown how to LABEL the image