7.1.5. Implementing Linear Regression from scratch in Python

  Рет қаралды 17,710

Siddhardhan

Siddhardhan

Күн бұрын

Пікірлер: 36
@brainsharpener8688
@brainsharpener8688 2 жыл бұрын
U are doing great work for the students. I have checked out many playlist but none of them have built the model from scratch 🏅🏅🏅🏅🏅🏅
@bhaminisekar6707
@bhaminisekar6707 Жыл бұрын
Thank you so much. Got good understanding of the concept.
@saisundarmasetty4283
@saisundarmasetty4283 Жыл бұрын
how to do linear regression using mini-batch gradient descent how it will be useful?
@abundanceontheway2511
@abundanceontheway2511 Жыл бұрын
Thank you very much for the detailed explanation!!!
@0xrpj
@0xrpj 3 жыл бұрын
In your code, how does the model know that it has reached global minimum? It will just run continuously till the iteration count. What if you set iteration count to 100 and it found the best m and c values on 50th iteration, what then? also, where is the cost function calculated in the code?
@Siddhardhan
@Siddhardhan 3 жыл бұрын
hi! that's why we use gradient Descent. beyond the global minimum, your parameters won't change much. you can also use a technique called as early stopping which will stop the training process if there's not a considerable change in the loss function, no matter what is the number of iterations we give. I planned to cover those topics in model optimization.
@0xrpj
@0xrpj 3 жыл бұрын
@@Siddhardhan okay thank you :)
@kasyapdharanikota8570
@kasyapdharanikota8570 3 жыл бұрын
@@Siddhardhan your explanations are very good
@ravipanavi
@ravipanavi Ай бұрын
When we need to get the dataset
@srikhanth.r4482
@srikhanth.r4482 Жыл бұрын
Nice explanation Sir can u please put an video for MSE and R2
@cozycorner988
@cozycorner988 3 жыл бұрын
when we calculated the weight and bias what is the final cost?
@Siddhardhan
@Siddhardhan 3 жыл бұрын
here, we are not calculating the cost directly. we are trying to minimise it. that's why we are calculating the gradient. if u still want to calculate the final cost, after training the model, calculate y_pred and plug in the values to cost function formula. you will get the value.
@cozycorner988
@cozycorner988 3 жыл бұрын
@@Siddhardhan thank you so much for responding but what is the cost function and how to code it
@vamsibolla4517
@vamsibolla4517 2 жыл бұрын
Actually in the previous videos you've used droping and putting in another variable for splitting the features and target values but here you used iloc for the same process ... Why not you use the same old process and you had used transpose in calculating dw...is this the reason for using iloc in this video
@vamsibolla4517
@vamsibolla4517 2 жыл бұрын
I have another doubt why didn't you use sum for dw you used sum for db though both formulas we have to do summation then why not in dw
@peaceandlov
@peaceandlov 2 жыл бұрын
same doubt
@papireddysrmap8703
@papireddysrmap8703 Жыл бұрын
@@vamsibolla4517 dot product actually caluclates the sum . for example : dot product of [1,2,3] and [4,5,6] gives 1.4 + 2.5 + 3.6 = ans. but in db there is no Xi . so dot product is not needed but summation is needed.
@rogue.3715
@rogue.3715 9 ай бұрын
The bias is typically a scalar value (a single value) , not a vector or matrix like weights ​@@vamsibolla4517
@vigneshskcet
@vigneshskcet 5 ай бұрын
@@papireddysrmap8703 nice
@rogue.3715
@rogue.3715 9 ай бұрын
I got error in model = linear_Regression(learning_rate =0.02, no_of_iterations = 1000) Errors is type error linear regression takes no arguments. Can anyone explain this
@treesabinoy1043
@treesabinoy1043 7 ай бұрын
TypeError because you've defined the __init__ method incorrectly in your Linear_Regression class. In Python, the __init__ method should have double underscores before and after "init".
@godisgreat3892
@godisgreat3892 Жыл бұрын
Really helpful. Thank you.
@p.v.sakhil9124
@p.v.sakhil9124 3 жыл бұрын
why didnt we use standardization in this case?
@Siddhardhan
@Siddhardhan 3 жыл бұрын
hi! it won't affect the accuracy in this case. u can definitely add it. same procedure.
@p.v.sakhil9124
@p.v.sakhil9124 3 жыл бұрын
@@Siddhardhan ok thank you sir
@deepikat4520
@deepikat4520 Жыл бұрын
I'm getting attribute error while in model .fit What to do next
@saqibaqeel9196
@saqibaqeel9196 Жыл бұрын
Check building a model from scratch code were you get one error "selb" you have to correct it as self
@payalkaur779
@payalkaur779 2 жыл бұрын
Thanks a ton!!!❤❤❤❤
@mirosaide8786
@mirosaide8786 3 жыл бұрын
How can we calculate accuracy?
@prithvichavan1388
@prithvichavan1388 3 ай бұрын
use evaluation metrics such as F1 score ,confusion matrix ,and much more are available
@gauravfamily2209
@gauravfamily2209 3 жыл бұрын
Nice
@Siddhardhan
@Siddhardhan 3 жыл бұрын
Thanks
7.2.1. Logistic Regression - Intuition | Machine Learning Course
22:31
Linear Regression From Scratch in Python (Mathematical)
24:38
NeuralNine
Рет қаралды 189 М.
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Building the Gradient Descent Algorithm in 15 Minutes | Coding Challenge
22:29
7.2.4. Gradient Descent for Logistic Regression
19:52
Siddhardhan
Рет қаралды 11 М.
Gradient Descent From Scratch in Python - Visual Explanation
28:44
Mastering Multiple Linear Regression in Scikit-Learn: A Step-by-Step Guide
25:58
Ryan & Matt Data Science
Рет қаралды 10 М.
7.2.5. Building Logistic Regression from scratch in Python
1:05:18
Siddhardhan
Рет қаралды 18 М.
7.1.1. Linear Regression - Intuition | Machine Learning Models
29:24
How to implement Linear Regression from scratch with Python
17:03
Normalization Vs. Standardization (Feature Scaling in Machine Learning)
19:48
Gradient Descent, Step-by-Step
23:54
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН