8: Eigenvalue Method for Systems - Dissecting Differential Equations

  Рет қаралды 68,857

Mu Prime Math

Mu Prime Math

Күн бұрын

Пікірлер
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Believe it or not, I have forgotten this method! 😆
@ayitinya
@ayitinya 2 жыл бұрын
Unbelievable for someone like you
@motherisape
@motherisape 2 жыл бұрын
I know right
@matthewsamson927
@matthewsamson927 Жыл бұрын
Ah he's human😂😂
@Mathologix
@Mathologix 10 ай бұрын
I was about to ask you to make video on this topic but I found your comment here..😂
@ellen128
@ellen128 2 жыл бұрын
Fully understand it now. Math shouldn't be about memorizing formulas. It should be about connecting the dots, observing patterns, and summarizing patterns into shortcuts called formulas, and enjoying the thinking that goes into that process.
@santiagoarce5672
@santiagoarce5672 4 жыл бұрын
You can really tell that there's a lot of thought put into these videos about what might be the best way of explaining something. I actually find your way of explaining stuff really helpful.
@RedSarGaming
@RedSarGaming 2 жыл бұрын
What a great video! Short and explains everything clearly. I cannot thank you enough my guy!
@IntegralMoon
@IntegralMoon 2 жыл бұрын
I found myself confused by MIT OCWs explanation, but this cleared it right up. Lovely work
@elischrag8436
@elischrag8436 Жыл бұрын
this was super helpful! Made the connection between eigenvalue/vector problems and solving differential equations much more clear.
@BuddyNovinski
@BuddyNovinski 2 жыл бұрын
Having taken both differential equations and linear algebra a long time ago, I can see the link between the Wronskian and vectors. How I wish this young man had been my professor (in his previous life). We have the advantage of the internet, so it's much easier to learn this stuff.
@drseagull
@drseagull 3 жыл бұрын
what a god, you summarised a 30 min lecture in under 10 mins
@dulosalfred7522
@dulosalfred7522 2 жыл бұрын
This is so informative. Thank you for a comprehensive explanation.
@calebjlee2685
@calebjlee2685 Жыл бұрын
Watching the eigenvalue formula show up was the the craziest cameo
@chigbuchiamaka4852
@chigbuchiamaka4852 Жыл бұрын
This is the only video I have watched explaining the concept behind solving system of equations 😩. Thank you Sir
@tristianity8529
@tristianity8529 8 ай бұрын
this is exactly the video i was in need off. thank you for a clear and consise explination!
@VietnamSteven
@VietnamSteven 2 жыл бұрын
This explanation is fantastic!!
@troyhernandez7277
@troyhernandez7277 5 жыл бұрын
Man, I forgot my differential equations classes. Very cool method.
@paliganguly7834
@paliganguly7834 Жыл бұрын
It is really very helpful video for me, I am so impressed by your way to solution.
@jonnydobandliamried8094
@jonnydobandliamried8094 5 ай бұрын
That was really clear. Good stuff.
@lavatasche2806
@lavatasche2806 2 жыл бұрын
Insanly well explained. Thank you
@dbgsdc3913
@dbgsdc3913 2 жыл бұрын
Sir , I really loveu.Hope u will contribute in mathematics in a large way,
@pontus_qwerty
@pontus_qwerty 2 жыл бұрын
Exactly what I was looking for. 👏
@Kallum
@Kallum 3 жыл бұрын
This helps me so much, i have a test about linear algebra next week about eigenvalues and systems of diff. Equations, thanks a bunch
@ericyoerg4404
@ericyoerg4404 3 жыл бұрын
This is really good. Just about to take my differential equations matrix methods portion test and this helped a lot with explaining the why and how. Thanks!
@muwongeevanspaul9166
@muwongeevanspaul9166 3 жыл бұрын
Whattttttt....you guy, u are really sweet in your maths. U are truly so good. I like your personality and the way to pause on the board and write on it. I have fully understood the concept....thanks so much.
@rodioniskhakov905
@rodioniskhakov905 7 ай бұрын
3:48 I don't understand why do you say that x' = e^(rt) but not x' = e^(At). Why r = A? Or rather, why e*I = A?
@adamblair8775
@adamblair8775 Ай бұрын
the r comes from guessing a solution to the differential equation and a is the matrix presnt in the diffrential equation
@MEBTabishKazmi
@MEBTabishKazmi 11 ай бұрын
Bro has the best handwriting ever
@AnythingGoesCodes
@AnythingGoesCodes 10 ай бұрын
if my professor ever did this, i'd say "whoa... an easy day"
@lukaskrause6022
@lukaskrause6022 3 жыл бұрын
Does the superposition principle only work for homogeneous differential equations?
@MuPrimeMath
@MuPrimeMath 3 жыл бұрын
Yes. If we add two solutions to a nonhomogeneous differential equation, the sum will not be a solution. For the nonhomogeneous case, we first find a particular solution, then add the general solution to the corresponding homogeneous equation!
@lukaskrause6022
@lukaskrause6022 3 жыл бұрын
@@MuPrimeMath ah right. So it’s the same general solution principle thing as for differential equations that aren’t systems
@mlfacts7973
@mlfacts7973 Жыл бұрын
Great video , thank you
@mouadjadil4551
@mouadjadil4551 3 жыл бұрын
is there any more simplification than this?? hats off bro
@carultch
@carultch Жыл бұрын
Yes. To find the eigenvalues, you can use lambda = m +/- sqrt(m^2 - p), to more directly find them. This only works for a 2x2 matrix, and unfortunately no such equivalent trick works for a 3x3 or anything beyond. The m is the mean of the two diagonal entries along the down-right diagonal. The p is the determinant, which is the product of the two eigenvalues. So for us: m = 1.5 p = 2*1 - 3*4 = -10 1.5 +/- sqrt(1.5^2 - (-10)) = 5 and -2
@blblbl2178
@blblbl2178 3 жыл бұрын
Amazing and clear explanation! Thank you.
@TopCuber
@TopCuber 5 жыл бұрын
Couldn't you just Laplace transform both equations at the start and a get a regular system of equations?
@MuPrimeMath
@MuPrimeMath 5 жыл бұрын
Yes, that's another method for solving systems!
@muwongeevanspaul9166
@muwongeevanspaul9166 3 жыл бұрын
He specified the method under use
@VndNvwYvvSvv
@VndNvwYvvSvv 3 жыл бұрын
Both are good, but the reason this can be more powerful is that computers can perform vector math easily, e.g. Matlab and that can be run on superclusters, graphics cards, or specialized processors like ASICs. Solving using Laplace can be done on a computer too, but it's more costly on CPU cycles and works less often especially for complicated problems.
@shadowbane7401
@shadowbane7401 4 жыл бұрын
it is most definitely E I G E N V A LU E T I M E
@tonk6812
@tonk6812 5 жыл бұрын
Hi...I want u to add a video for solving system of diiferntial eqns hving complex roots by using matrix exponential form....
@MuPrimeMath
@MuPrimeMath 5 жыл бұрын
There will be a video where I solve a system with complex roots soon!
@tonk6812
@tonk6812 5 жыл бұрын
@@MuPrimeMath ...keep on going...👍👍👍
@FelipeHenrique-yq3bu
@FelipeHenrique-yq3bu 6 ай бұрын
I got the eigenvector associated to the eigenvalue -2 equal to (1, -4/3), is this okay?
@MuPrimeMath
@MuPrimeMath 6 ай бұрын
Yes. Any scalar multiple of an eigenvector is also an eigenvector with the same eigenvalue.
@tgeofrey
@tgeofrey 3 жыл бұрын
Thank you very Much
@sriharsharevu4316
@sriharsharevu4316 2 жыл бұрын
Loved it.
@realking4918
@realking4918 3 жыл бұрын
EXCELLENT VIDEO
@ElifArslan-l9g
@ElifArslan-l9g 3 жыл бұрын
thank you so much
@user21121
@user21121 4 жыл бұрын
Great explanation!
@ZackSussmanMusic
@ZackSussmanMusic 5 жыл бұрын
awesome!!
@arcwand
@arcwand Жыл бұрын
i love you thank you so much
@aijazdar7824
@aijazdar7824 3 ай бұрын
But 'r' is actually 'A' SO BOTH ARE SAME, HOW U ARRIVED EIGEN VALUE EQUATION
@bigdaddie2273
@bigdaddie2273 4 жыл бұрын
Thanks man
@じばにゃん-w7y
@じばにゃん-w7y 3 жыл бұрын
凄いわかりやすかった。ありがとうございました。
@izu0506
@izu0506 Жыл бұрын
It will take me a year to connect the dots😂🔫
@wduandy
@wduandy 5 жыл бұрын
Nice!
@tonk6812
@tonk6812 5 жыл бұрын
👍👍👍👍...nice way...
@motherisape
@motherisape 2 жыл бұрын
wow sir WOOOOW !
@desmondhutchinson6095
@desmondhutchinson6095 5 жыл бұрын
interesting...
@mohamedmouh3949
@mohamedmouh3949 2 жыл бұрын
thank you
@dulosalfred7522
@dulosalfred7522 2 жыл бұрын
❤️❤️❤️❤️❤️❤️❤️❤️
@arushorya4597
@arushorya4597 Жыл бұрын
gas vid
@holyshit922
@holyshit922 Жыл бұрын
In russian textbook i found following method x' = 2x + 3y y' = 4x + y x' = 2x + 3y ky' = 4kx + ky x' + ky' = (2+4k)x + (3+k)y x' + ky' = (2+4k)(x+(3+k)/(2+4k)y) (3+k)/(2+4k) = k 3 + k = k(2 + 4k) 3 + k = 2k + 4k^2 4k^2 + k - 3 = 0 (4k - 3)(k + 1) = 0 x' - y' = -2x +2y d(x - y)/dt = -2(x-y) d(x - y)/(x-y) = -2 ln(x - y) = -2t+ln(C_{1}) x - y = C_{1}exp(-2t) x' + 3/4y' = 5x + 15/4y d(x + 3/4y)/dt = 5(x+3/4y) d(x + 3/4y)/(x+3/4y) = 5dt ln(x + 3/4y) = 5t + ln(C_{2}) x + 3/4y = C_{2}exp(5t) x - y = C_{1}exp(-2t) x + 3/4y = C_{2}exp(5t) 3/4x - 3/4y = 3/4C_{1}exp(-2t) x + 3/4y = C_{2}exp(5t) 7/4x = 3/4C_{1}exp(-2t) + C_{2}exp(5t) x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) x - y = C_{1}exp(-2t) -(x + 3/4y = C_{2}exp(5t)) -7/4y = C_{1}exp(-2t) - C_{2}exp(5t) y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) To generalize it for more equations we need k1,k2...,k_{n-1} but problems may appear for repeated eigenvalues I dont speak russian (When i went to school it hadn't been taught. My mother didnt want to teach me) but this approach probably has something to do with eigenvalues and eigenvectors
@ferhatkorkmaz11
@ferhatkorkmaz11 3 жыл бұрын
great explanation!
@chewbecca9443
@chewbecca9443 2 жыл бұрын
thanks man
9: Variation of Parameters - Dissecting Differential Equations
11:11
Motivating Eigenvalues and Eigenvectors with Differential Equations
23:58
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Solving 8 ODEs using 8 methods -- Ace your Differential Equations Final!
13:26
Finding Eigenvalues and Eigenvectors
17:10
Professor Dave Explains
Рет қаралды 930 М.
System of differential equations by elimination, ex1
20:44
blackpenredpen
Рет қаралды 195 М.
sketching phase portraits
20:01
Ellie Blair
Рет қаралды 486 М.
Linear Systems of DE with Complex Eigenvalues
24:38
dafdasg1
Рет қаралды 63 М.
Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra
17:16
Physics Students Need to Know These 5 Methods for Differential Equations
30:36
Physics with Elliot
Рет қаралды 1,1 МЛН
5 2 The Eigenvalue Method for Homogeneous Systems
20:23
Tyler Wallace
Рет қаралды 6 М.
Differential equations, a tourist's guide | DE1
27:16
3Blue1Brown
Рет қаралды 4,3 МЛН
21. Eigenvalues and Eigenvectors
51:23
MIT OpenCourseWare
Рет қаралды 663 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН