Believe it or not, I have forgotten this method! 😆
@ayitinya2 жыл бұрын
Unbelievable for someone like you
@motherisape2 жыл бұрын
I know right
@matthewsamson927 Жыл бұрын
Ah he's human😂😂
@Mathologix10 ай бұрын
I was about to ask you to make video on this topic but I found your comment here..😂
@ellen1282 жыл бұрын
Fully understand it now. Math shouldn't be about memorizing formulas. It should be about connecting the dots, observing patterns, and summarizing patterns into shortcuts called formulas, and enjoying the thinking that goes into that process.
@santiagoarce56724 жыл бұрын
You can really tell that there's a lot of thought put into these videos about what might be the best way of explaining something. I actually find your way of explaining stuff really helpful.
@RedSarGaming2 жыл бұрын
What a great video! Short and explains everything clearly. I cannot thank you enough my guy!
@IntegralMoon2 жыл бұрын
I found myself confused by MIT OCWs explanation, but this cleared it right up. Lovely work
@elischrag8436 Жыл бұрын
this was super helpful! Made the connection between eigenvalue/vector problems and solving differential equations much more clear.
@BuddyNovinski2 жыл бұрын
Having taken both differential equations and linear algebra a long time ago, I can see the link between the Wronskian and vectors. How I wish this young man had been my professor (in his previous life). We have the advantage of the internet, so it's much easier to learn this stuff.
@drseagull3 жыл бұрын
what a god, you summarised a 30 min lecture in under 10 mins
@dulosalfred75222 жыл бұрын
This is so informative. Thank you for a comprehensive explanation.
@calebjlee2685 Жыл бұрын
Watching the eigenvalue formula show up was the the craziest cameo
@chigbuchiamaka4852 Жыл бұрын
This is the only video I have watched explaining the concept behind solving system of equations 😩. Thank you Sir
@tristianity85298 ай бұрын
this is exactly the video i was in need off. thank you for a clear and consise explination!
@VietnamSteven2 жыл бұрын
This explanation is fantastic!!
@troyhernandez72775 жыл бұрын
Man, I forgot my differential equations classes. Very cool method.
@paliganguly7834 Жыл бұрын
It is really very helpful video for me, I am so impressed by your way to solution.
@jonnydobandliamried80945 ай бұрын
That was really clear. Good stuff.
@lavatasche28062 жыл бұрын
Insanly well explained. Thank you
@dbgsdc39132 жыл бұрын
Sir , I really loveu.Hope u will contribute in mathematics in a large way,
@pontus_qwerty2 жыл бұрын
Exactly what I was looking for. 👏
@Kallum3 жыл бұрын
This helps me so much, i have a test about linear algebra next week about eigenvalues and systems of diff. Equations, thanks a bunch
@ericyoerg44043 жыл бұрын
This is really good. Just about to take my differential equations matrix methods portion test and this helped a lot with explaining the why and how. Thanks!
@muwongeevanspaul91663 жыл бұрын
Whattttttt....you guy, u are really sweet in your maths. U are truly so good. I like your personality and the way to pause on the board and write on it. I have fully understood the concept....thanks so much.
@rodioniskhakov9057 ай бұрын
3:48 I don't understand why do you say that x' = e^(rt) but not x' = e^(At). Why r = A? Or rather, why e*I = A?
@adamblair8775Ай бұрын
the r comes from guessing a solution to the differential equation and a is the matrix presnt in the diffrential equation
@MEBTabishKazmi11 ай бұрын
Bro has the best handwriting ever
@AnythingGoesCodes10 ай бұрын
if my professor ever did this, i'd say "whoa... an easy day"
@lukaskrause60223 жыл бұрын
Does the superposition principle only work for homogeneous differential equations?
@MuPrimeMath3 жыл бұрын
Yes. If we add two solutions to a nonhomogeneous differential equation, the sum will not be a solution. For the nonhomogeneous case, we first find a particular solution, then add the general solution to the corresponding homogeneous equation!
@lukaskrause60223 жыл бұрын
@@MuPrimeMath ah right. So it’s the same general solution principle thing as for differential equations that aren’t systems
@mlfacts7973 Жыл бұрын
Great video , thank you
@mouadjadil45513 жыл бұрын
is there any more simplification than this?? hats off bro
@carultch Жыл бұрын
Yes. To find the eigenvalues, you can use lambda = m +/- sqrt(m^2 - p), to more directly find them. This only works for a 2x2 matrix, and unfortunately no such equivalent trick works for a 3x3 or anything beyond. The m is the mean of the two diagonal entries along the down-right diagonal. The p is the determinant, which is the product of the two eigenvalues. So for us: m = 1.5 p = 2*1 - 3*4 = -10 1.5 +/- sqrt(1.5^2 - (-10)) = 5 and -2
@blblbl21783 жыл бұрын
Amazing and clear explanation! Thank you.
@TopCuber5 жыл бұрын
Couldn't you just Laplace transform both equations at the start and a get a regular system of equations?
@MuPrimeMath5 жыл бұрын
Yes, that's another method for solving systems!
@muwongeevanspaul91663 жыл бұрын
He specified the method under use
@VndNvwYvvSvv3 жыл бұрын
Both are good, but the reason this can be more powerful is that computers can perform vector math easily, e.g. Matlab and that can be run on superclusters, graphics cards, or specialized processors like ASICs. Solving using Laplace can be done on a computer too, but it's more costly on CPU cycles and works less often especially for complicated problems.
@shadowbane74014 жыл бұрын
it is most definitely E I G E N V A LU E T I M E
@tonk68125 жыл бұрын
Hi...I want u to add a video for solving system of diiferntial eqns hving complex roots by using matrix exponential form....
@MuPrimeMath5 жыл бұрын
There will be a video where I solve a system with complex roots soon!
@tonk68125 жыл бұрын
@@MuPrimeMath ...keep on going...👍👍👍
@FelipeHenrique-yq3bu6 ай бұрын
I got the eigenvector associated to the eigenvalue -2 equal to (1, -4/3), is this okay?
@MuPrimeMath6 ай бұрын
Yes. Any scalar multiple of an eigenvector is also an eigenvector with the same eigenvalue.
@tgeofrey3 жыл бұрын
Thank you very Much
@sriharsharevu43162 жыл бұрын
Loved it.
@realking49183 жыл бұрын
EXCELLENT VIDEO
@ElifArslan-l9g3 жыл бұрын
thank you so much
@user211214 жыл бұрын
Great explanation!
@ZackSussmanMusic5 жыл бұрын
awesome!!
@arcwand Жыл бұрын
i love you thank you so much
@aijazdar78243 ай бұрын
But 'r' is actually 'A' SO BOTH ARE SAME, HOW U ARRIVED EIGEN VALUE EQUATION
@bigdaddie22734 жыл бұрын
Thanks man
@じばにゃん-w7y3 жыл бұрын
凄いわかりやすかった。ありがとうございました。
@izu0506 Жыл бұрын
It will take me a year to connect the dots😂🔫
@wduandy5 жыл бұрын
Nice!
@tonk68125 жыл бұрын
👍👍👍👍...nice way...
@motherisape2 жыл бұрын
wow sir WOOOOW !
@desmondhutchinson60955 жыл бұрын
interesting...
@mohamedmouh39492 жыл бұрын
thank you
@dulosalfred75222 жыл бұрын
❤️❤️❤️❤️❤️❤️❤️❤️
@arushorya4597 Жыл бұрын
gas vid
@holyshit922 Жыл бұрын
In russian textbook i found following method x' = 2x + 3y y' = 4x + y x' = 2x + 3y ky' = 4kx + ky x' + ky' = (2+4k)x + (3+k)y x' + ky' = (2+4k)(x+(3+k)/(2+4k)y) (3+k)/(2+4k) = k 3 + k = k(2 + 4k) 3 + k = 2k + 4k^2 4k^2 + k - 3 = 0 (4k - 3)(k + 1) = 0 x' - y' = -2x +2y d(x - y)/dt = -2(x-y) d(x - y)/(x-y) = -2 ln(x - y) = -2t+ln(C_{1}) x - y = C_{1}exp(-2t) x' + 3/4y' = 5x + 15/4y d(x + 3/4y)/dt = 5(x+3/4y) d(x + 3/4y)/(x+3/4y) = 5dt ln(x + 3/4y) = 5t + ln(C_{2}) x + 3/4y = C_{2}exp(5t) x - y = C_{1}exp(-2t) x + 3/4y = C_{2}exp(5t) 3/4x - 3/4y = 3/4C_{1}exp(-2t) x + 3/4y = C_{2}exp(5t) 7/4x = 3/4C_{1}exp(-2t) + C_{2}exp(5t) x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) x - y = C_{1}exp(-2t) -(x + 3/4y = C_{2}exp(5t)) -7/4y = C_{1}exp(-2t) - C_{2}exp(5t) y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t) To generalize it for more equations we need k1,k2...,k_{n-1} but problems may appear for repeated eigenvalues I dont speak russian (When i went to school it hadn't been taught. My mother didnt want to teach me) but this approach probably has something to do with eigenvalues and eigenvectors