A Challenging Inequality, 2024 UMD Competition, Part II, Problem 4

  Рет қаралды 850

Dr. Ebrahimian

Dr. Ebrahimian

Күн бұрын

Пікірлер: 12
@sibidinakaran4757
@sibidinakaran4757 4 күн бұрын
Dr. Ebrahimian loved having you for 340 last year!
@DrEbrahimian
@DrEbrahimian 4 күн бұрын
That was a great class!
@surajmandal_567
@surajmandal_567 7 күн бұрын
Hi doctor I am having problem proving the following identity: For 1
@DrEbrahimian
@DrEbrahimian 7 күн бұрын
I suggest looking at small cases on the difference of m and r. See if you can prove the equality for m-r=0, 1, 2, etc. I suggest you try proving it with little algebra. I haven’t solved it though.
@huyviethungnguyen7788
@huyviethungnguyen7788 6 күн бұрын
I think using strong induction for m+r and the fact that xCy=(x-1)C(y-1)+(x-1)Cy would work.
@DrEbrahimian
@DrEbrahimian 6 күн бұрын
This is an interesting idea. Thank you for sharing. I don’t know that this idea would work. You end up getting a different identity that needs to be proved.
@huyviethungnguyen7788
@huyviethungnguyen7788 6 күн бұрын
@@DrEbrahimianLet's denote the sum as f(r,m). I split (k-1)C(r-1) × mCk into (k-2)C(r-2) × (m-1)C(k-1) + (k-2)C(r-1) × (m-1)C(k-1) + (k-1)C(r-1) × (m-1)Ck), which enables me to write f(r,m) in terms of f(r-1,m-1), f(r,m-1). That doesn't work? I haven't done the work to check tho because I don't have paper with me right now.
@DrEbrahimian
@DrEbrahimian 6 күн бұрын
@ I don’t know that the second sum can be written in terms of f(r, m-1).
A Challenging Inequality, 2024 UMD Competition, Part II, Problem 4
20:36
SLIDE #shortssprintbrasil
0:31
Natan por Aí
Рет қаралды 49 МЛН
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
A questionable factorial problem
18:46
Michael Penn
Рет қаралды 10 М.
Can you crack this beautiful equation? - University exam question
18:39
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,3 МЛН
a+b+c+d+e = abcde
12:01
Prime Newtons
Рет қаралды 47 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 426 М.
|i Factorial| You Won't Believe The Outcome
8:24
BriTheMathGuy
Рет қаралды 382 М.
Putnam 2024, A1, A Neat Diophantine Equation
14:43
Dr. Ebrahimian
Рет қаралды 1,3 М.
SLIDE #shortssprintbrasil
0:31
Natan por Aí
Рет қаралды 49 МЛН