A Cool Radical Equation | Math Olympiads

  Рет қаралды 23,946

SyberMath

SyberMath

Күн бұрын

Пікірлер: 80
@jamesnotking
@jamesnotking Жыл бұрын
I would never ever think of letting a = 4 and transform the equation into a quadratic in a! Genius.
@koennako2195
@koennako2195 Жыл бұрын
yeah well, it only works the this certain type of problem. If you watch blackpenredpen’s video on the dear tejas challenge, I think it’s called quadratic in terms of 5, you can see another problem like this where it works, but it doesn’t work normally.
@leif1075
@leif1075 Жыл бұрын
@@koennako2195 isn't thst then stupid and infuriating. Why do something NO 0NE would EVER think of..
@koennako2195
@koennako2195 Жыл бұрын
@@leif1075 kind of, but it’s quite impossible to solve this equation otherwise, so solving this question would be something no one would think of anyways. So idk. Other methods that I’ve seen need very high levels of thinking. This way is just remember this type of question
@leif1075
@leif1075 Жыл бұрын
@@koennako2195 no its not impossible..he even uses a second methid..thiugh substitution of this type is also funky and not something most ppl would.think..But surely there is another way.
@goldfing5898
@goldfing5898 Жыл бұрын
3rd method: Solve a quartic equation using Ferrari's method of completing the square: x^2 - 4 = sqrt(4 - x) (x^2 - 4)^2 = 4 - x x^4 - 8x^2 + 16 = 4 - 1x x^4 - 8x^2 + 1x + 12 = 0 (Reduced or depressed quartic equation). Isolate the 4th power: x^4 = 8x^2 - 1x - 12 Multiply by 4, in order to avoid fractions: 4x^4 = 32x^2 - 4x - 48 Complete the square by adding 4zx^2 + z^2 to both sides: 4x^4 + 4zx^2 + z^2 = (4z + 32)x^2 - 4x + (z^2 - 48) Rewrite the left side as a perfect square: (2x^2 + z)^2 = 4(z + 8)x^2 - 4x + (z^2 - 48) Condition for the right side being a perfect square, too: ax^2 + bx + c is a perfect square iff. discriminant D = b^2 - 4ac = 0, i.e. iff. b^2 = 4ac. In this case: (-4)^2 = 4 * 4(z + 8)(z^2 - 48) 16 = 16(z + 8)(z^2 - 48) 1 = (z + 8)(z^2 - 48) 1 = z^3 + 8z^2 - 48z - 384 0 = z^3 + 8z^2 - 48z - 385 This cubic resolvent has three real solutions. I take the only integer solution z = -7 and plug it into the quartic equation: (2x^2 - 7)^2 = 4*(-7 + 8)x^2 - 4x + ((-7)^2 - 48) (2x^2 - 7)^2 = 4*1*x^2 - 4x + (49 - 48) (2x^2 - 7)^2 = 4x^2 - 4x + 1 And now we can rewrite the right side as a perfect square, too: (2x^2 - 7)^2 = (2x - 1)^2 Taking the square root on both sides (A^2 = B^2 => A = +-B): 2x^2 - 7 = +-(2x - 1) So we get two quadratic equations: 2x^2 - 7 = 2x - 1 2x^2 - 2x - 6 = 0 x^2 - x - 3 = 0 and 2x^2 - 7 = -2x + 1 2x^2 + 2x - 8 = 0 x^2 + x - 4 = 0 The solutions of these are x1, x2 = (1 +- sqrt(13))/2 x3, x4 = (-1 +- sqrt(17))/2 the same as in the video. But I currently don't yet understand how to check which solutions are valid and which are false positives, except by putting approximate the values into the original equation.
@SyberMath
@SyberMath Жыл бұрын
Very nice! You can check the domain of the original equation
@goldfing5898
@goldfing5898 Жыл бұрын
@@SyberMath Yes, but being comprised in the defintion set (is "defintion set" the correct term in English?) is a necessary but no sufficient condition for the validity of a solution candidate. For example, the equation sqrt(x) = -3 has the definition set R+0 (all real numbers >= 0). If I square the equation, I get x = 9. The 9 is in the definition set but no valid solution. So I have to check every solution by plugging it into the original equation. I can of course check the approximate values this way, or check where the two graphs of y = sqrt(4 - x) and y = x^2 - 4 intersect.
@touristofsongs4946
@touristofsongs4946 Жыл бұрын
The system of equations made me scream in awe
@SyberMath
@SyberMath Жыл бұрын
😍
@leif1075
@leif1075 Жыл бұрын
@@SyberMath why in God's name would anyone think of thst..even Ramanujan wouldn't thinknof thst why not just solve by breaking it into two quadratics..(x^2 + bx + c)(x^2 + dx + f)...THAT should work..isn't this just crazy??
@misterdubity3073
@misterdubity3073 Жыл бұрын
Also factors to (x^2 - 7/4)^2 = (x - 1/2)^2 with same results. Take x^4 - 8x^2 + x + 12 = 0 break into x^4 - 7x^2 - 1x^2 + x + 49/4 - 1/4 = x^4 - 7x^2 + 49/4 + (- 1x^2 + x- 1/4) = 0
@winniedobrokot
@winniedobrokot Жыл бұрын
y=Sqrt(4-x) and y=x^2 - 4 are same shape parabolas rotated around coordinate origin and they are symmetrical for y=-x line. This allows to find roots on this symmetry line with new equation sqrt(4-x)=-x. Also this equation gives us quadratic polynomial which can be used to divide original 4 degree polynomial and get the second factor.
@SyberMath
@SyberMath Жыл бұрын
That's interesting!
@mohamedb737
@mohamedb737 Жыл бұрын
nice!
@leif1075
@leif1075 Жыл бұрын
@@SyberMath I see the graph but how exactly would you divine the second factor ? Don't you agree this substitution you did here is infuriating because nonone wpuldmever think to solve for 4 since normally you eliminate the variables not the constants..didnt it take you a while to see that..and surely there is another method more intuitive or more clearly logical than these two ways shown here?
@moeberry8226
@moeberry8226 Жыл бұрын
The domain is xor equal to 0 since the sqrt(4-x) is always nonnegative. Which means |x|>or equal to 2. Or in other words x< or equal to -2 or x> or equal to 2. The two extraneous roots come from the negative sqrt(4-x) which we don’t consider by definition.
@samarthchohan106
@samarthchohan106 Жыл бұрын
God of substitution
@abhinavanand9032
@abhinavanand9032 Жыл бұрын
√(4-x) =x^2-4 4+√(4-x) =x^2 √(4-x)(√(4-x) +1) =x(x-1) √(4-x) =B X=A Solve for either a or B from the quadratic and set x equal to it
@nasrullahhusnan2289
@nasrullahhusnan2289 Жыл бұрын
sqrt(4-x)=x²-4 belongs to a special equation sqrt(y-x)=x²-y which upon squaring we get y-x=x⁴-2xy+y² We may consiider it as quartic equation in x, or as quadratic one in y. As quartic equation in x, we can obtain the solution trough Ferrri's method: x as function of y. As quadratic equation, the solution is easier to obtain. There are only two roots: y as function of x --> x is then the inverse function of y.
@allanmarder456
@allanmarder456 Жыл бұрын
As in method 1, after squaring both sides you get x^4 - 8x^2 +x +12. since there is no cubic term I guessed the quartic was the product of two quadratics: (x^2 +Bx +C)(X^2 - Bx +E). Then comparing coefficients you get constant = C*E =12 coeff of x = B*(E -C)= 1 coeff of x^2 = (C + E - B^2)= -8. This system is satisfied if B=1 C= -4 and E= -3. Pluging in these values you get the quadratics in method 1.
@rorydaulton6858
@rorydaulton6858 Жыл бұрын
That is what I did, but I had to guess to get the values of B, C, and E. The guess was helped by B*(E-C) = 1: If B is an integer it divides 1 so I might as well guess B=1. Then E-C=1 and C*E=12 leading quickly to C=-4 and E=-3, or C=3 and E=4 which leads to the same factorization.
@allanmarder456
@allanmarder456 Жыл бұрын
@@rorydaulton6858 Sometimes the method of undetermined coefficients can lead to some pretty crazy systems. In this case the system was fairly simple and the G&C method (guess and check) was not that hard to implement.
@SyberMath
@SyberMath Жыл бұрын
Nice!
@loflight75
@loflight75 Жыл бұрын
위 식을 양쪽을 제곱하면 4차식이 나오고, x
@SarthakJoshi_maths
@SarthakJoshi_maths Жыл бұрын
Bro, use english.
@robertveith6383
@robertveith6383 Жыл бұрын
​@@SarthakJoshi_maths -- * *English*
@IAmAPeti
@IAmAPeti Жыл бұрын
@@robertveith6383Ching chong ching xang-a-lang xong xong xi piao piao bing chiling -420 social credit rong xie zung
@msathwik8729
@msathwik8729 Жыл бұрын
2nd method just left me dumbfounded. Great solution!
@SyberMath
@SyberMath Жыл бұрын
Glad it helped!
@leprechaunos
@leprechaunos Жыл бұрын
A very smart solution. I just squared everything and then got a quartic equation and solved it with ferrari's method.
@dmtri1974
@dmtri1974 Жыл бұрын
I really enjoyed!!!! I did not have any clue of solving it....but then I saw the title "Olympiad Maths" so I said to myself "you have some small excuse for not to...."
@imonkalyanbarua
@imonkalyanbarua Жыл бұрын
Both the methods are amazing! Just wow! 👏👏👏❤️
@SyberMath
@SyberMath Жыл бұрын
Thanks so much 😊
@imonkalyanbarua
@imonkalyanbarua Жыл бұрын
@@SyberMath 😇🙏
@antoniusnies-komponistpian2172
@antoniusnies-komponistpian2172 Жыл бұрын
How about dividing both sides by (4-x)? Then we have: 1/sqrt(4-x)=-x-4 Square both sides: 1/(4-x)=x^2+8x+16 *(x-4) x^3+4x^2-16x-64=-1 That way we easily get a cubic equation.
@angelmendez-rivera351
@angelmendez-rivera351 Жыл бұрын
x^2 - 4 divided by 4 - x is not equal to -x - 4, though.
@sumit180288
@sumit180288 Жыл бұрын
2nd solution is much better
@yoav613
@yoav613 Жыл бұрын
Yes,but the first method is really cool!
@popitripodi573
@popitripodi573 Жыл бұрын
Very interesting!!! ❤❤❤
@SyberMath
@SyberMath Жыл бұрын
Glad you think so! 🥰
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
Elevo al quadrato e ottengo x^4-8x^2+x+12=0...calcolo e risolvo la quartica in (x^2-7/2)^2-(x-1/2)^2=0...
@CassieAngelica
@CassieAngelica Жыл бұрын
This might take some time.=)
@SyberMath
@SyberMath Жыл бұрын
hehe 😜
@broytingaravsol
@broytingaravsol Жыл бұрын
x=(1+√13)/2, -(1+√17)/2
@Zeynep_Soysal
@Zeynep_Soysal Жыл бұрын
Marvelous👌🏻
@SyberMath
@SyberMath Жыл бұрын
Thank you!
@xbxdarwine642
@xbxdarwine642 Жыл бұрын
that is simply B..E..A..U..TIFUL
@SyberMath
@SyberMath Жыл бұрын
Thank you!
@yoav613
@yoav613 Жыл бұрын
Very nice! I liked the very quick checking solutions at 7:35 😂💯
@kuriana100
@kuriana100 Жыл бұрын
I did not get this part
@SyberMath
@SyberMath Жыл бұрын
Glad you liked it!
@SyberMath
@SyberMath Жыл бұрын
👍😉
@murdock5537
@murdock5537 Жыл бұрын
Awesome, many thanks, Sir, you are great! 🙂
@SyberMath
@SyberMath Жыл бұрын
So nice of you
@marceliusmartirosianas6104
@marceliusmartirosianas6104 Жыл бұрын
sqrt(4-x)=x^2-4]=[ 4-x= 4/x= 4x-16]=[4/x=4x/16= 4/x= x/4]=[ 4x-4x=1] = 4x/4x=4x-1=4x/1=4x=x^4=4 x=1 AcademiC Uppsala Universty 23 september nobel prize Fields Prize Abel Prize Medal diplom
@RAG981
@RAG981 Жыл бұрын
Good one.
@SyberMath
@SyberMath Жыл бұрын
Thanks!
@jmart474
@jmart474 Жыл бұрын
Very interesting method.👍
@SyberMath
@SyberMath Жыл бұрын
Glad you think so!
@SOBIESKI_freedom
@SOBIESKI_freedom Жыл бұрын
I enjoyed it. Thank you. (You asked us to let you know.)
@SyberMath
@SyberMath Жыл бұрын
Glad you enjoyed it! 🤩
@fk319fk
@fk319fk Жыл бұрын
I did it a very different way. Turns out I just made a big mess and gave up cause it was all wrong.
@SyberMath
@SyberMath Жыл бұрын
Never give up!
@iweeen6463
@iweeen6463 Жыл бұрын
Hi Syber, thank you for daily uploading! I am going take part in Republican Olympiad in Moldova this week, so i'm exercising a lot. Could you please help me with this exercise: x and y are real numbers that verify this equality x^2 + y^2 - 2x +12y + 33 = 0. Proof that x > y Thank you a lot!
@iweeen6463
@iweeen6463 Жыл бұрын
Nevermind, just solved it 😃
@monishrules6580
@monishrules6580 Жыл бұрын
Post solution pls
@SyberMath
@SyberMath Жыл бұрын
Nice! Good luck
@JordHaj
@JordHaj Жыл бұрын
​@@monishrules6580 complete the squares and rewrite in the form of the equation of a circle (1) (x-1)^2 + (y+6)^2 = 2^2. Two double inequalities follow: (2) -2
@monishrules6580
@monishrules6580 Жыл бұрын
@@JordHaj 😊
@alipourzand6499
@alipourzand6499 Жыл бұрын
Only fools rush in! Square both sides, 4 -> 3 -> 2 vieta ... 😃
@neuralwarp
@neuralwarp Жыл бұрын
2 stay or 2 unsubscribe. That is the ℝ question.
@SyberMath
@SyberMath Жыл бұрын
4 ℝ's? 😜😄
@archangecamilien1879
@archangecamilien1879 Жыл бұрын
I mean, it would be 4-x = (x-2)(x+2), no + or -, lol...I mean...
@archangecamilien1879
@archangecamilien1879 Жыл бұрын
[(x-2)(x+2)]^2, that is...
@archangecamilien1879
@archangecamilien1879 Жыл бұрын
...a question like this on YOutube, there is probably a trick to get out of solving a quartic, lol...
@smoothsentient
@smoothsentient Жыл бұрын
i turned sqrt(4-x) = x^2 -4 into x^2 - 16 + 12 = (x-4)(x+4)+12 and let y=4-x for massive simplication, hope you like my method too
@SuperMath111
@SuperMath111 Жыл бұрын
Nice
@SyberMath
@SyberMath Жыл бұрын
Thanks
A Fun Exponential Expression
7:36
SyberMath
Рет қаралды 18 М.
A Cool Exponential Equation | Math Olympiads
9:36
SyberMath
Рет қаралды 30 М.
小路飞还不知道他把路飞给擦没有了 #路飞#海贼王
00:32
路飞与唐舞桐
Рет қаралды 81 МЛН
Trapped by the Machine, Saved by Kind Strangers! #shorts
00:21
Fabiosa Best Lifehacks
Рет қаралды 40 МЛН
An Octic Trigonometric Equation
10:37
SyberMath
Рет қаралды 314
Solving A Radical Equation in Two Ways
11:35
SyberMath
Рет қаралды 14 М.
This Is My New Favorite Number
3:28
BriTheMathGuy
Рет қаралды 333 М.
How tall is the glass? - Solving math puzzles
5:21
Math Queen
Рет қаралды 2,3 М.
Simplifying a Radical | Denesting
10:08
SyberMath
Рет қаралды 11 М.
A Homemade Exponential Equation | SyberMath
7:39
SyberMath
Рет қаралды 21 М.
What REALLY is e? (Euler’s Number)
23:18
Foolish Chemist
Рет қаралды 38 М.
What Lies Above Pascal's Triangle?
25:22
Dr Barker
Рет қаралды 253 М.
A Nice Functional Equation
8:45
SyberMath
Рет қаралды 12 М.
The Most Beautiful Equation
13:39
Digital Genius
Рет қаралды 682 М.
小路飞还不知道他把路飞给擦没有了 #路飞#海贼王
00:32
路飞与唐舞桐
Рет қаралды 81 МЛН