A creative trig problem

  Рет қаралды 33,675

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 99
@RAG981
@RAG981 2 жыл бұрын
As a teacher it would have been nice to be able to edit out my errors and pretend they had not happened, but I always considered that if the class did not spot them, I had failed anyway.
@andywhelan8608
@andywhelan8608 2 жыл бұрын
This is what I always tell my students, 'if you spot my errors, it means you're learning!"
@agrajyadav2951
@agrajyadav2951 2 жыл бұрын
@@andywhelan8608 my "teachers" say that if you spot their errors, you are insulting them
@DaveJ6515
@DaveJ6515 2 жыл бұрын
@@agrajyadav2951 "Idiots" is the right definition in that case. Not "teachers".
@MyOneFiftiethOfADollar
@MyOneFiftiethOfADollar Жыл бұрын
As a teacher, you make around the same number of mistakes as your students. Teachers are rarely the smartest person in the room, but some carry on like they are. No need to look perfect in front of them. In fact, it's more honest and models the difficulties we all face in teaching and learning more about our craft.
@shmuelzehavi4940
@shmuelzehavi4940 11 ай бұрын
@@agrajyadav2951 They are bad teachers.
@carl13579
@carl13579 2 жыл бұрын
Note that sin(x)+cos(x)=sqrt(2)(sin(x)cos(pi/4)+cos(x)sin(pi/4))=sqrt(2)sin(x+pi/4) which is why it lies between -sqrt(2) and sqrt(2).
@samosamo4019
@samosamo4019 2 жыл бұрын
Nice
@oasisfan3149
@oasisfan3149 2 жыл бұрын
Neat
@matheusjahnke8643
@matheusjahnke8643 Жыл бұрын
yes, it even generalizes: A sin(x) + Bcos(x) =hypot(A,B) (~A sin(x) + ~B cos(x)) = hypot(A,B) [sin (x)cos(theta) + cos(x)sin(theta)] = hypot(A,B) sin(x + theta) Where hypot(A,B)=sqrt(A²+B²) ~A = A / hypot(A,B) ~B = B / hypot(A,B) theta = arcsin(~A) = arccos(~B)
@michaelempeigne3519
@michaelempeigne3519 2 жыл бұрын
i like to turn 8x^3 - 24x + 11= 0 into a monic polynomial. Let u = 2x then you get u^3 - 12u + 11 = 0 now you can see that u = 1 by inspection. so you get ( u - 1 ) ( u^2 + u - 11 ) = 0 u = 1 2x = 1 x = 1 / 2 u^2 + u - 11 = 0 u = [ - 1 + or - sqrt ( 1 + 44 ) ] / 2 u = [ - 1 + or - 3 sqrt ( 5 ) ] / 2 so x = [ - 1 + or - 3 sqrt 5 ] / 4
@prathikkannan3324
@prathikkannan3324 2 жыл бұрын
Yes, and then simply note sinx + cosx = sqrt(2)(sinx * sqrt(2)/2 + cosx * sqrt(2)/2) = sqrt(2) * sin(x + 45) which is between -sqrt(2) and sqrt(2) inclusive, and reject all answers except 1/2
@karolakkolo123
@karolakkolo123 2 жыл бұрын
@@prathikkannan3324 yes, that's a really clever trick I remembered from some stackexchange post I saw years ago, the sqrt(2)*sin(pi/4 + x) one
@DavidSavinainen
@DavidSavinainen 2 жыл бұрын
@@dondisco6399 No, (-1-3√5)/4 is about -1.927 and (-1+3√5)/4 is about 1.427, so neither is above 2 in absolute value.
@mcwulf25
@mcwulf25 2 жыл бұрын
@@dondisco6399 Not true because sin x and cos x are not independent. If sin x = 1 then cos x = 0.
@Ron_Shvartsman
@Ron_Shvartsman 2 жыл бұрын
Very clever trick with u=2x!!
@stardust-r8z
@stardust-r8z 2 жыл бұрын
The rational root theorem is very useful.
@leif1075
@leif1075 Жыл бұрын
Right and Inthink a lot of ppl myself included don't remember it so why not solve it without it? It's not that intuitive.
@stardust-r8z
@stardust-r8z Жыл бұрын
@@leif1075 I think you'll realize it's intuitive if you read a proof for it. It's more systematic (at least to check if the cubic has any rational roots) than hoping to guess the solutions, or using the longer general ways of solving cubics.
@tomhase7007
@tomhase7007 Жыл бұрын
In reality it is much less useful than one might think. It is extremely unlikely that a rational polynomial has rational roots - this happens only in the presence of very strong symmetries or in exercises in which the numbers have been doctored by the person designing the exercise. To guess a rational root and then to factor a cubic polynomial to be able to apply the formula for the roots of a quadratic polynomial is not a widely applicable method to solve cubic equations (unless one is explicitly only interested in rational roots). It is also completely unnecessary. There is a perfectly nice formula for the (real or even complex) roots of a cubic polynomial that should be taught and used more widely.
@zeravam
@zeravam 2 жыл бұрын
Great combination of algebra and trigonometry! What I liked the most was the point where algebra and trignometry sepparate each other, knowing that maximum value of sinx+cosx is +sqrt2 (1st Quadrant) and minimum value is -sqrt2 (3rd Quadrant). Great exercise Michael
@carlosguerrayanez
@carlosguerrayanez 2 жыл бұрын
"That's a nice place to stop" is becoming my favorite catchphrase. As always, nice video Michael!
@DrQuatsch
@DrQuatsch 2 жыл бұрын
You can then eventually solve for cos(x) and sin(x). They are 1/4[1 +/- sqrt(7)]. If you then solve for the angles theta for which this happens, then you get two angles between -180 degrees and 180 degrees, namely approximately equal to -24.295 degrees and +114.295 degrees. Which at first I found curious, because the two angles sum to 90 degrees. But then I remembered the whole solution was symmetrical. cos(theta1) = a and sin(theta1) = b, and the other solution is cos(theta2) = b and sin(theta2) = a. You can just simply replace cos(theta2) by sin(pi/2 - theta2) and similarly with the sin(theta2) = cos(pi/2 - theta2), and you get that theta1 = pi/2 - theta2, so the sum of the two solutions is equal to pi/2 which of course is 90 degrees.
@ArthurvanH0udt
@ArthurvanH0udt 10 ай бұрын
At around 8m30 why not use synthetic division (another tool) to show 1/2 is a root and then immediately also have the parameters (double in this case wrt your example) of the quadratic!
@goodplacetostop2973
@goodplacetostop2973 2 жыл бұрын
10:09 Homework? 11:12 Good Place To Stop
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
OK
@karolakkolo123
@karolakkolo123 2 жыл бұрын
You're still going lol
@txikitofandango
@txikitofandango 2 жыл бұрын
Slightly different way: (sin + cos)^3 = sin^3 + cos^3 + 3sincos(sin + cos) (sin + cos)^2 = 1 + 2sincos (sin + cos)^3 = 11/16 + (3/2)((sin+cos)^2 - 1)(sin + cos) x^3 = 11/16 + (3/2)(x^2-1)x 8x^3 - 24x + 11 = 0 ...
@zeravam
@zeravam 2 жыл бұрын
I just did it the same way
@NaN_000
@NaN_000 2 жыл бұрын
Great way:)
@kiyagiles655
@kiyagiles655 Жыл бұрын
I did it pretty much the same way: (Sinx + cosx)^2 = sin^2x + cos^2x + 2sinxcosx = 1 + 2sinxcosx (1 + 2sinxcosx)(sinx + cosx) = sinx + cosx + 2sin^2xcosx + 2sinxcos^2x = H + 2cosx(1 - cos^2x) + 2sinx(1 - sin^2x) = H + 2H - 2H3 = H^3, 3H - 2H3 = H^3 H^3 - 3H + 2H3 = 0 H^3 - 3H + 2(11/16) = 0, 16H^3 - 48H + 22 = 0, 8H^3 - 24H + 11 = 0
@Robokapp
@Robokapp 2 жыл бұрын
i like how that 16 magically appears on the second board after you super missed it on first board... :)
@manucitomx
@manucitomx 2 жыл бұрын
What a great problem. Thank you, professor.
@prbprb2
@prbprb2 2 жыл бұрын
Let S= a+b; D=a-b. Then the factorization suggested by Michael gives: S(S^2 +3D^2)/4 = 11/16 But due to trig S^2 +D^2 = 2 Eliminate D^2 between these two equations. 0= 8S^3-24S +11= (2S-1)(4S^2 +2S-11) . And, since S
@Roberto-REME
@Roberto-REME 2 жыл бұрын
Excellent job and very well explained. You're amazing Michael!
@vishalmishra3046
@vishalmishra3046 2 жыл бұрын
@Mike you can mention @ 10:00 in the video | cosT + sinT = √2 sin (T+ π/4) = √2 cos(T - π/4). Therefore, range of cos + sin becomes -√2
@vishalmishra3046
@vishalmishra3046 2 жыл бұрын
*More general rule* -D
@mikesmithyes967
@mikesmithyes967 2 жыл бұрын
Michael, love the videos. I would like to see some more Putnam problems and problem solving strategies. Thanks.
@memeboy1057
@memeboy1057 2 жыл бұрын
There is an easier way to solve the cubic - you just factor it as following - 8x^3 - 24x + 11 = 0 8x^3 - 2x - 22x + 11 = 0 2x( 4x^2 - 1 ) - 11( 2x - 1 ) = 0 2x( 2x + 1 )( 2x - 1 ) - 11 ( 2x -1 ) = 0 (2x - 1) ( 4x^2 + 2x - 11 ) = 0 This will save the trouble of going through the substitution process.
@ojas3464
@ojas3464 2 жыл бұрын
In this example the leading coefficient 8 of the cubic happens to be perfect cube. Otherwise some substitution may be inescapable.
@MyOneFiftiethOfADollar
@MyOneFiftiethOfADollar 2 жыл бұрын
Nice find. Factoring by grouping cleaner, but quadratic still has to be done
@mcwulf25
@mcwulf25 2 жыл бұрын
I just thought: I wonder if x = 1/2 is a root, inspired by the 8x^3 term. Then the rest was easy.
@MyOneFiftiethOfADollar
@MyOneFiftiethOfADollar 2 жыл бұрын
Knowing the range -sqrt(2) < sinx + cosx < sqrt(2) a big time labor saver from having to check the two nasty surds! Would not have noticed that working it cold.
@chaosredefined3834
@chaosredefined3834 Жыл бұрын
To speed up the RRT step, you can introduce a variable u = 2x. 8x^3 - 24x + 11 = 0 (2x)^3 - 12(2x) + 11 = 0 u^3 - 12u + 11 = 0 The possible rational roots of this are 1, -1, 11, and -11. You can quickly check that 1 fits. Then, since u=2x, then x = 1/2.
@yuriandropov9462
@yuriandropov9462 2 жыл бұрын
х(16-8(х^2-1))
@rome8726
@rome8726 2 жыл бұрын
That such a nice problem !!!
@Ron_Shvartsman
@Ron_Shvartsman 2 жыл бұрын
I was able to find the cubic polynomial, but had forgotten the Rational roots theorem and was unable to proceed further. Nice problem! Also, instead of finding x^2, which is a fast way of doing it, I came up with the clunkier version of finding x^3, since we already started with sin^3(theta) + cos^3(theta). This gives us 11/16 + 3x*sin(theta)cos(theta) = x^3, which we can then substitute in to get x^3 - 3x + 11/8 = 0, as in the video.
@paologat
@paologat 2 жыл бұрын
You can get to the same cubic equation in a less convoluted way by expanding x^3 as the first step, instead of factoring the sum of cubes.
@carlosmirandarocha8905
@carlosmirandarocha8905 2 жыл бұрын
I wished professor Penn gave me math classes
@cernejr
@cernejr 2 жыл бұрын
x = 2 (π n + tan^(-1)(1/3 (2 +- sqrt(7)))), n element Z -0.42 rad == -24.3 deg 1.99 rad == 114.3 deg Both solutions have either the sin or the cos a negative value.
@cernejr
@cernejr 2 жыл бұрын
abs(sin(x)) + abs(cos(x)) >= 1 for all real x, so to get a solution one of the summands must be negative.
@Ny0s
@Ny0s 2 жыл бұрын
Very nice problem
@TechyMage
@TechyMage 2 жыл бұрын
After solving till cubic equation i was putting random value in specified range [-√2,√2] thought about 1/2 due to odd and even integers Thanks for reminding about rational root theorem
@DaveJ6515
@DaveJ6515 2 жыл бұрын
Neat and easy, this is a good exercise.
@SQRTime
@SQRTime 2 жыл бұрын
Hi Andrea. If you are into problems from math competitions, our channel can be something you enjoy. Hope it helps. One sample video Solving a nice trigonometry problem kzbin.info/www/bejne/oIbFkHyPeKiJpqM
@TedHopp
@TedHopp 2 жыл бұрын
Looking at 8x^3 - 24x +11 = 0, an obvious substitution is y = 2x. This gives us the monic polynomial y^3 - 12y + 11 = 0. And look at that! The sum of the coefficients is zero, so y = 1 is a root. The rest is then easy.
@MyOneFiftiethOfADollar
@MyOneFiftiethOfADollar Жыл бұрын
The necessary -sqrt(2)
@niuhaihui
@niuhaihui 2 жыл бұрын
sin(theta) + cos(theta) = sqrt(2) * sin(theta + pi/4), thus its range is in between -sqrt(2) and sqrt(2).
@jursamaj
@jursamaj 2 жыл бұрын
Quick solution: fire up Geogebra. Put in sin³+cos³ and 11/16.Find the 2 intersections in the 0-2π range, and drop verticals from them. Put in sin+cos. Find the 2 intersections with the previous verticals. Both happen at y=.5.
@ojas3464
@ojas3464 2 жыл бұрын
Some proctors during exams / tests may insist students logon to the wolframalpha site and figure improving an input like x^2 + y^2 = 1, and x^3 + y^3 = 11 /16, what is (x + y)?
@jursamaj
@jursamaj 2 жыл бұрын
@@ojas3464 That system of equations is better if you replace 11/16 with √2. 😁
@skit_inventor
@skit_inventor 2 жыл бұрын
Checking the range of sin(θ) + cos(θ) can be done easily without any calculus if one uses the auxiliary angle (in this case π/4). At least that's what comes to my mind first
@s4archie
@s4archie 2 жыл бұрын
I have a wrong solution in which I can't identify the error. Help appreciated. Let s=sin(a), c=cos(a), r=11/16. We have s^3+c^3=r, so (s+c)^3=r+sc(s+c). Also (s+c)(s^2-sc+c^2)=r so (s+c)(1-sc)=r giving (s+c)-sc(s+c)=r and (s+c)=r+sc(s+c). This gives us (s+c)^3=(s+c). Since r0, we have (s+c)^2=1 Since this result is independent of the value of r, it's obviously wrong, but I can't see why.
@phiefer3
@phiefer3 2 жыл бұрын
How exactly did you come to this: (s+c)^3=r+sc(s+c) expanding out the left side, and then substituting r in for the sum of the 2 cubed terms would leave the right side as r+3sc(s+c) I didn't bother working through the rest of your work, but anything based on that first step is going to be mistaken.
@s4archie
@s4archie 2 жыл бұрын
@@phiefer3 Ah, yes. I forgot the coefficient.
@fariborzhessabi5273
@fariborzhessabi5273 2 жыл бұрын
It's very good bravo.
@hcgreier6037
@hcgreier6037 2 жыл бұрын
05:34 ....the 16 multiplies the 1 too, isn't it? Do I miss something here? Aah, fixed at 06:28!
@tungstentoaster
@tungstentoaster 2 жыл бұрын
I thought I was going crazy until I read this comment.
@Kumurajiva
@Kumurajiva 2 жыл бұрын
I had no idea before that I can increase my bicep measure by teaching math! Now I know
@dominicellis1867
@dominicellis1867 2 жыл бұрын
But then, what is theta?
@mishania6678
@mishania6678 2 жыл бұрын
5:33 you forgot to put 16 instead of 1 in brackets cuz you multiplied both sides on 16
@Reza_Audio
@Reza_Audio 2 жыл бұрын
RIGHT
@s4623
@s4623 2 жыл бұрын
5:21 you see it here first 16 * 1 = 1 ! [should have been x(16 - 8(x²-1)) instead] and corrected through TV Magic after ad.🤣
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
Really cool problem. I definitely want to go back over this. Oh btw I joined your Patreon earlier today at the $2 tier I plan on moving up to the $5 soon, but I just wanted to test things out and join the discord first. As usual thank you for the video.
@mathadventuress
@mathadventuress 2 жыл бұрын
couldnt we just use complex exponentials?
@johns.8246
@johns.8246 2 жыл бұрын
I did this for (cos z)^3 + (sin z)^3 = 1 where the real part of z is on the interval [0 , 2pi). I found 2 rather obvious real solutions and two pesky complex ones. Anyone up to the task?
@roberttelarket4934
@roberttelarket4934 2 жыл бұрын
Very nice!
@jakolu
@jakolu 2 жыл бұрын
It's funny as (-1+3sqrt(5))/4=1.427.... which is really close to sqrt(2)
@carstenmeyer7786
@carstenmeyer7786 2 жыл бұрын
_Newton's Identities_ are another way to go! Define *x_1 := sin(𝞱), x_2 := cos(𝞱)* and the sums of powers *k ≥ 0: s_k := x_1 ^ k + x_2 ^ k with s_1 = ?* By definition we get *s_0* , _Pythagoras' Theorem_ yields *s_2* while the problem gives us *s_3* directly: *s_0 = 2, s_2 = 1, s_3 = 11 / 16* Now consider the polynomial *p(x) := ( x - x_1 ) * ( x - x_2 ) = x^2 - s_1 * x + x_1 * x_2* If we sum over the zeros, we get a recursive relation for *s_k* : *k ≥ 2: 0 = \sum_{m = 1}^2 x_m^{k - 2} * p(x_m)* *= s_k - s_1 * s_{k-1} + x_1 * x_2 * s_{k - 2}* We may evaluate the recursion for *k = 2* and *k = 3* to get two equations in *s_1* : *k = 2: 0 = 1 - s_1^2 + 2 * x_1 * x_2* *k = 3: 0 = 11/16 - s_1 + s_1 * x_1 * x_2* Use the first equation to eliminate *x_1 * x_2* from the second equation and obtain the cubic: *0 = x^3 - 12 * x + 11 | x := 2 * s_1* *= (x - 1) * (x^2 + x - 11)* Via _Rational Root Theorem_ we guess *x = 1* and get three real solutions: *x ∈ {1; (-1 ∓ 3√5) / 2 }* Use the addition theorem *a * sin(𝞱) + b * cos(𝞱) = √(a^2 + b^2) * cos(𝞱 - atan2(b; a))* to estimate *s_1* : *s_1 = √2 * cos(𝞱 - 𝝅/4) ∈ [-√2; √2]* Only the first solution *x = 1* leads to *s_1 = 1/2 ∈ [-√2; √2]*
@SQRTime
@SQRTime 2 жыл бұрын
Hi Carsten. If you are into problems from math competitions, our channel can be something you enjoy. Hope it helps. One sample video Solving a nice trigonometry problem kzbin.info/www/bejne/oIbFkHyPeKiJpqM
@Vidrinskas
@Vidrinskas 2 жыл бұрын
Probably could just solve for theta but I'd imagine it's messy.
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
5:38 Note: There should be a 16 where the 1 is.
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
6:26 As usual you're on top of it
@leif1075
@leif1075 Жыл бұрын
Why write it as 2x -1 instead of x - 1/2..I don't think anyone would.ever think of that so why do it?
@luciferbikkuangmin9528
@luciferbikkuangmin9528 2 жыл бұрын
I think we can use Newton's Identity, the properties of symmetric polynomials.
@Mystery_Biscuits
@Mystery_Biscuits 2 жыл бұрын
nice problem
@kevinmartin7760
@kevinmartin7760 Жыл бұрын
Did this actually prove 1/2 is a solution? It was not disproven by the range test, but I'm not sure that proves it isn't just another artifact of the calculations.
@benjaminojeda8094
@benjaminojeda8094 2 жыл бұрын
5:22 You forgot to put 16 instead of 1
@NeganLucilleForever
@NeganLucilleForever 2 жыл бұрын
this problem is a trig cove, so it is, but you my cullies can solve it
@CM63_France
@CM63_France 2 жыл бұрын
Hi, Ok, great! Home work : given two numbers a and b, that we only know the 2 quantities a^3 - b^3 and a^2-b^2 , calculate a-b .
@abdallahmohamedelhady6668
@abdallahmohamedelhady6668 2 жыл бұрын
Good job👏
@mariomestre7490
@mariomestre7490 2 жыл бұрын
Genial, ets un crack
@FedericoGuille
@FedericoGuille 2 жыл бұрын
Cool
@SQRTime
@SQRTime 2 жыл бұрын
Hi Federico. If you are into problems from math competitions, our channel can be something you enjoy. Hope it helps. One sample video Solving a nice trigonometry problem kzbin.info/www/bejne/oIbFkHyPeKiJpqM
@c0d3w4rri0r
@c0d3w4rri0r 2 жыл бұрын
Question. If you alow theta to be complex do the 2 excluded solutions come back in.
@christianimboden1058
@christianimboden1058 2 жыл бұрын
I was just going to suggest to solve for all complex solutions
@nbourbaki6610
@nbourbaki6610 2 жыл бұрын
You didn't show that 1/2 is a solution, but just that if a solution exists it has to be 1/2.
@TJStellmach
@TJStellmach 2 жыл бұрын
That's a trivial consequence sin θ + cos θ being continuous and ranging between a minimum of -√2 and a maximum of √2 (which were asked to accept as given when we rejected the other roots). Really, it only requires that sin θ + cos θ can clearly take on values both less than and greater than 1/2 (say, -1 and +1).
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
2nd
This integral looks crazy
16:14
Michael Penn
Рет қаралды 41 М.
a nice non-linear recursion problem
14:56
Michael Penn
Рет қаралды 20 М.
Happy birthday to you by Secret Vlog
00:12
Secret Vlog
Рет қаралды 6 МЛН
PRANK😂 rate Mark’s kick 1-10 🤕
00:14
Diana Belitskay
Рет қаралды 12 МЛН
On the fifth root of the identity matrix.
14:42
Michael Penn
Рет қаралды 32 М.
Why there are no 3D complex numbers
15:21
Deeper Science
Рет қаралды 83 М.
when three triangle is one square
19:21
Michael Penn
Рет қаралды 5 М.
Use EULER'S SUBSTITUTION not TRIG SUBSTITUTION!
15:05
Michael Penn
Рет қаралды 30 М.
One of the first transcendental numbers -- Liouville's Constant
21:29
two functional equations from the IMO
21:41
Michael Penn
Рет қаралды 6 М.
ultimate counting problem from Oxford MAT
25:13
blackpenredpen
Рет қаралды 52 М.
An intriguing problem with my favorite function
10:14
Michael Penn
Рет қаралды 25 М.
How to Design a Wheel That Rolls Smoothly Around Any Given Shape
21:58
Morphocular
Рет қаралды 1,7 МЛН
Happy birthday to you by Secret Vlog
00:12
Secret Vlog
Рет қаралды 6 МЛН