Two like terms. They like each other. I just don't only like it I love it!
@SyberMath5 ай бұрын
😍
@darkphoenixzyzz5 ай бұрын
I did it in my head strait when I saw it but I only found the first solution y = x. Nice !
@scottleung95875 ай бұрын
Nice!
@maxhagenauer245 ай бұрын
As soon as you see it, you can very easily see how the right side can be written as how it looks on the left side if f(x) were x so they must be equal.
@WahranRai5 ай бұрын
Just rewrite : f(x) + 1/f(x) = (x^2 + 1)/x = x + 1/x ----> f(x) = x
@darkphoenixzyzz5 ай бұрын
missing 2nd solution here tho
@mystychief5 ай бұрын
Here the solution f(x)=1/x is also easy to see: if you fill in 1/x for x then on both sides of the "=" the two terms swap and the equality remains basically the same.
@VanamaliParthasarathi5 ай бұрын
@@darkphoenixzyzzsince addition is commutative, swap right side as 1/x+x, then you get other solution
@kikilolo67715 ай бұрын
Nice guess of a solution. Now you can search for the trivial proof
@pipilu30555 ай бұрын
u observed a solution how does that show u found all the solutions
@MichaelJamesActually5 ай бұрын
symmetry for the win
@joseluishablutzelaceijas9285 ай бұрын
Aren't there in fact 16 solutions? One can choose, for each of the intervals (-infty, -1), (-1, 0), (0, 1) and (1, infty) the function x or the function 1/x respectively, with f(1) = 1 and f(-1) = -1. One has two choices for each interval and there are four intervals, giving a total of 2^4 = 16 solutions.
@naharmath5 ай бұрын
Yes, if f is supposed to be continuous. But here there are an infinite number of solutions
@ehtibardzhafarov51085 ай бұрын
@@naharmaththis sybernath guy really doesn’t know much, does he? He could have added differentiability at all points except for zero to justify the “two solutions”, but he clearly unaware of the problem.
@naharmath5 ай бұрын
@@ehtibardzhafarov5108 even then we will have 4 solutions because of the non existence of f at 0
@mircoceccarelli66895 ай бұрын
👍👍👍😁🤪👋
@MochooCheung-pu8js5 ай бұрын
A systematic way: let y=f(x) to save notations. y^2-(x+1/x)y+1=0. Solving this quadratic equation for y in terms of x yields y=x or y=1/x. Done.
@CriticSimon5 ай бұрын
Did you watch the video?
@duccline5 ай бұрын
f(x) = x or 1/x
@gelbkehlchen13 күн бұрын
Solution: f(x)+1/f(x) = (x²+1)/x |*f(x) ⟹ [f(x)]²+1 = (x²+1)/x*f(x) |-(x²+1)/x*f(x) ⟹ [f(x)]²-(x²+1)/x*f(x)+1 = 0 |p-q-formula ⟹ f1/2(x) = (x²+1)/(2x)±√[(x²+1)²/(4x²)-1] = (x²+1)/(2x)±√[(x^4+2x²+1-4x²)/(4x²)] = (x²+1)/(2x)±√[(x^4-2x²+1)/(4x²)] = (x²+1)/(2x)±√[(x²-1)²/(4x²)] = (x²+1)/(2x)±(x²-1)/(2x) ⟹ f1(x) = (x²+1)/(2x)+(x²-1)/(2x) = (x²+1+x²-1)/(2x) = 2x²/(2x) = x and f2(x) = (x²+1)/(2x)-(x²-1)/(2x) = (x²+1-x²+1)/(2x) = 2/(2x) = 1/x Checking the result by setting the result into the equation: 1st result f1(x) = x left side: f(x)+1/f(x) = x+1/x = (x²+1)/x right side: (x²+1)/x 2nd result f2(x) = 1/x left side: f(x)+1/f(x) = 1/x+x = (x²+1)/x right side: (x²+1)/x everything o.k.
@kikilolo67715 ай бұрын
Actually the two proofs you present are false. You MUST check for multigraphs functions
@tixanthrope5 ай бұрын
KUDOZ!
@CriticSimon5 ай бұрын
What are you talking about?
@kikilolo67715 ай бұрын
@@CriticSimon if you have (f(x))^2=1 it DOESN'T mean that there are two solutions. You also have f such that f(x)=1 if x>0 and f(x)=-1 if x
@PooshanHalder5 ай бұрын
3rd method: guess it like i did
@giuseppemalaguti4355 ай бұрын
x ,1/x
@naharmath5 ай бұрын
there are more than two solutions.
@armacham5 ай бұрын
name three solutions
@benjaminvatovez88235 ай бұрын
Do you mean it could be multigraph functions?
@darkphoenixzyzz5 ай бұрын
Not real for sure. Maybe complex.
@naharmath5 ай бұрын
@@armacham without any condition of continuity a we can have f(x)=x for some values of x and f(x)=1/x for the others.
@armacham5 ай бұрын
@@naharmath f(x) = x is one solution. f(x) = 1/x is a second solution That's two. Name a third solution. We're all waiting.