A Functional Equation from Crux Mathematicorum

  Рет қаралды 7,475

SyberMath

SyberMath

Күн бұрын

Пікірлер: 40
@roberttelarket4934
@roberttelarket4934 5 ай бұрын
Two like terms. They like each other. I love it!
@roberttelarket4934
@roberttelarket4934 5 ай бұрын
Two like terms. They like each other. I just don't only like it I love it!
@SyberMath
@SyberMath 5 ай бұрын
😍
@darkphoenixzyzz
@darkphoenixzyzz 5 ай бұрын
I did it in my head strait when I saw it but I only found the first solution y = x. Nice !
@scottleung9587
@scottleung9587 5 ай бұрын
Nice!
@maxhagenauer24
@maxhagenauer24 5 ай бұрын
As soon as you see it, you can very easily see how the right side can be written as how it looks on the left side if f(x) were x so they must be equal.
@WahranRai
@WahranRai 5 ай бұрын
Just rewrite : f(x) + 1/f(x) = (x^2 + 1)/x = x + 1/x ----> f(x) = x
@darkphoenixzyzz
@darkphoenixzyzz 5 ай бұрын
missing 2nd solution here tho
@mystychief
@mystychief 5 ай бұрын
Here the solution f(x)=1/x is also easy to see: if you fill in 1/x for x then on both sides of the "=" the two terms swap and the equality remains basically the same.
@VanamaliParthasarathi
@VanamaliParthasarathi 5 ай бұрын
​@@darkphoenixzyzzsince addition is commutative, swap right side as 1/x+x, then you get other solution
@kikilolo6771
@kikilolo6771 5 ай бұрын
Nice guess of a solution. Now you can search for the trivial proof
@pipilu3055
@pipilu3055 5 ай бұрын
u observed a solution how does that show u found all the solutions
@MichaelJamesActually
@MichaelJamesActually 5 ай бұрын
symmetry for the win
@joseluishablutzelaceijas928
@joseluishablutzelaceijas928 5 ай бұрын
Aren't there in fact 16 solutions? One can choose, for each of the intervals (-infty, -1), (-1, 0), (0, 1) and (1, infty) the function x or the function 1/x respectively, with f(1) = 1 and f(-1) = -1. One has two choices for each interval and there are four intervals, giving a total of 2^4 = 16 solutions.
@naharmath
@naharmath 5 ай бұрын
Yes, if f is supposed to be continuous. But here there are an infinite number of solutions
@ehtibardzhafarov5108
@ehtibardzhafarov5108 5 ай бұрын
@@naharmaththis sybernath guy really doesn’t know much, does he? He could have added differentiability at all points except for zero to justify the “two solutions”, but he clearly unaware of the problem.
@naharmath
@naharmath 5 ай бұрын
@@ehtibardzhafarov5108 even then we will have 4 solutions because of the non existence of f at 0
@mircoceccarelli6689
@mircoceccarelli6689 5 ай бұрын
👍👍👍😁🤪👋
@MochooCheung-pu8js
@MochooCheung-pu8js 5 ай бұрын
A systematic way: let y=f(x) to save notations. y^2-(x+1/x)y+1=0. Solving this quadratic equation for y in terms of x yields y=x or y=1/x. Done.
@CriticSimon
@CriticSimon 5 ай бұрын
Did you watch the video?
@duccline
@duccline 5 ай бұрын
f(x) = x or 1/x
@gelbkehlchen
@gelbkehlchen 13 күн бұрын
Solution: f(x)+1/f(x) = (x²+1)/x |*f(x) ⟹ [f(x)]²+1 = (x²+1)/x*f(x) |-(x²+1)/x*f(x) ⟹ [f(x)]²-(x²+1)/x*f(x)+1 = 0 |p-q-formula ⟹ f1/2(x) = (x²+1)/(2x)±√[(x²+1)²/(4x²)-1] = (x²+1)/(2x)±√[(x^4+2x²+1-4x²)/(4x²)] = (x²+1)/(2x)±√[(x^4-2x²+1)/(4x²)] = (x²+1)/(2x)±√[(x²-1)²/(4x²)] = (x²+1)/(2x)±(x²-1)/(2x) ⟹ f1(x) = (x²+1)/(2x)+(x²-1)/(2x) = (x²+1+x²-1)/(2x) = 2x²/(2x) = x and f2(x) = (x²+1)/(2x)-(x²-1)/(2x) = (x²+1-x²+1)/(2x) = 2/(2x) = 1/x Checking the result by setting the result into the equation: 1st result f1(x) = x left side: f(x)+1/f(x) = x+1/x = (x²+1)/x right side: (x²+1)/x 2nd result f2(x) = 1/x left side: f(x)+1/f(x) = 1/x+x = (x²+1)/x right side: (x²+1)/x everything o.k.
@kikilolo6771
@kikilolo6771 5 ай бұрын
Actually the two proofs you present are false. You MUST check for multigraphs functions
@tixanthrope
@tixanthrope 5 ай бұрын
KUDOZ!
@CriticSimon
@CriticSimon 5 ай бұрын
What are you talking about?
@kikilolo6771
@kikilolo6771 5 ай бұрын
@@CriticSimon if you have (f(x))^2=1 it DOESN'T mean that there are two solutions. You also have f such that f(x)=1 if x>0 and f(x)=-1 if x
@PooshanHalder
@PooshanHalder 5 ай бұрын
3rd method: guess it like i did
@giuseppemalaguti435
@giuseppemalaguti435 5 ай бұрын
x ,1/x
@naharmath
@naharmath 5 ай бұрын
there are more than two solutions.
@armacham
@armacham 5 ай бұрын
name three solutions
@benjaminvatovez8823
@benjaminvatovez8823 5 ай бұрын
Do you mean it could be multigraph functions?
@darkphoenixzyzz
@darkphoenixzyzz 5 ай бұрын
Not real for sure. Maybe complex.
@naharmath
@naharmath 5 ай бұрын
@@armacham without any condition of continuity a we can have f(x)=x for some values of x and f(x)=1/x for the others.
@armacham
@armacham 5 ай бұрын
@@naharmath f(x) = x is one solution. f(x) = 1/x is a second solution That's two. Name a third solution. We're all waiting.
I Made A Functional Equation 😊
10:54
SyberMath
Рет қаралды 5 М.
A Nice Diophantine Equation | Math Olympiads
9:22
SyberMath
Рет қаралды 2,7 М.
amazing#devil #lilith #funny #shorts
00:15
Devil Lilith
Рет қаралды 18 МЛН
When mom gets home, but you're in rollerblades.
00:40
Daniel LaBelle
Рет қаралды 148 МЛН
A Nice Equation From Math Olympiads
11:38
SyberMath
Рет қаралды 2,5 М.
Functional Equation
14:15
Prime Newtons
Рет қаралды 394 М.
A Simple Sum of the Series Containing Factorials
3:25
Cornerstones of Math
Рет қаралды 2,6 М.
Solving An Inequality For Smallest Integer n
8:29
SyberMath
Рет қаралды 5 М.
BASIC Calculus - Understand Why Calculus is so POWERFUL!
18:11
TabletClass Math
Рет қаралды 252 М.
Limit of x! over  x^x as x goes to infinity
10:49
Prime Newtons
Рет қаралды 382 М.
An Interesting Functional Equation
8:59
SyberMath Shorts
Рет қаралды 24 М.
The Subfactorial is Hilarious
24:00
Wrath of Math
Рет қаралды 106 М.
Summing Reciprocals of Odd Factorials
8:23
SyberMath
Рет қаралды 4,5 М.
A Homemade Functional Equation | Math Olympiads
10:14
SyberMath
Рет қаралды 5 М.
amazing#devil #lilith #funny #shorts
00:15
Devil Lilith
Рет қаралды 18 МЛН