a good place for a floor equation.

  Рет қаралды 27,089

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 197
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
0:02 Good Place To Stop 10:27 Michael’s homework 10:33 Good Place To Stop
@goodplacetostart9099
@goodplacetostart9099 3 жыл бұрын
You Should Include 0:02
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
@@goodplacetostart9099 People were asking for you during the livestream, where were you?
@goodplacetostart9099
@goodplacetostart9099 3 жыл бұрын
@@goodplacetostop2973 I had been hospitalised for few weeks and got discharged recently . I had some food infection , nothing related to Covid thankfully
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
@@goodplacetostart9099 Oh wow, I didn't know that, I'm sorry to hear that.
@pardeepgarg2640
@pardeepgarg2640 3 жыл бұрын
@@goodplacetostop2973 bruh you are good place to stop and one upper than you is good place to start So Is there is anyone who is Good place to live,die,eat,rest,..etc
@MrRyanroberson1
@MrRyanroberson1 3 жыл бұрын
1:55 with 0^0 being undefined, you can't hope for it to be a solution even with 0 in the naturals
@Bodyknock
@Bodyknock 3 жыл бұрын
Actually, sometimes 0^0 is undefined but other times authors define 0^0 to be 1. For example in combinatorics it's common to define 0^0 = 1 since 1 is the number of permutations of the empty set. (Obviously you can't "prove" that 0^0 =1, it would always be by definition, but when it's useful to give it a defined value that value is normally 1 because it's the most natural value to assign.)
@jimbolambo103
@jimbolambo103 3 жыл бұрын
@@Bodyknock Even then, you don't get a solution as 0^0 - 0 has equal 0.
@Bodyknock
@Bodyknock 3 жыл бұрын
@@jimbolambo103 Right, still not a solution, just pointing out that sometimes there's a defined value.
@davidepierrat9072
@davidepierrat9072 3 жыл бұрын
@@Bodyknock are you sure you are not talking about “0!” ? That’s the formula for the number of permutations of a set. 0!=1 by definition and no arguing with that
@Bodyknock
@Bodyknock 3 жыл бұрын
@@davidepierrat9072 You're right, I mispoke. n^n is the number of combinations of selecting objects n times from a set of n objects with replacement. In the case of the empty set and selecting 0 times, that's 0^0 = 1 (i.e. there's one way to make no selections with replacement out of the empty set.) P.S. Another isomorphic example is when counting the number of functions from a finite set to itself (e.g. the number of functions from {1,2,3} -> {1,2,3}). The number of such functions for a set of size n is n^n, and tn the case of the empty set, there's exactly one such empty function so it makes sense to define 0^0 = 1 here.
@Grundini91
@Grundini91 3 жыл бұрын
1>=0 is not a contradiction. It is a tautology.
@blackkk07
@blackkk07 3 жыл бұрын
(1) 1:40 That's an interest issue about what is 0^0. Maybe restrict x >0 is better. (2) In 6:40 there is no 'contradiction' for 1 >= 0. In fact if n = 1, the original condition x - [x] = n = 1 fails by the fact that 0 = 1 and n = 0). In fact, n = 0 and x \in [1, 2) are solutions, since x^n - [x] = 1 - 1 = 0 = n. Conclusion: I think a better way to discuss is to separate cases by n as follows: * If n = 0, get x \in [1, 2) are solutions (as (3) above). * If n = 1, no solution (as (2) above). * If n >= 2, as the video and get x = n = 2 and x = \sqrt[n]{n + 1}.
@oida10000
@oida10000 3 жыл бұрын
(1) he normally excludes 0 from the natrual numbers, so for him that is not an issue. Also if we consider consider it to be one, than x=1 is the only the value that would work here. Why? Because 0^0 is undefined and more often than not also considered to be 1 and not 0.
@Triple_Trouble739
@Triple_Trouble739 2 жыл бұрын
@@oida10000 if n=0, we have the equation x^0 = floor(x) + 0. Provided x /= 0, we can simplify to 1=floor(x) so the whole interval of [1,2) is valid as that results in floor(x) = 1, no where in that interval was x = 0.
@pablomartinsantamaria8689
@pablomartinsantamaria8689 3 жыл бұрын
Since when 1≥0 is a contradiction?
@samwalko
@samwalko 3 жыл бұрын
The actual contradiction isn't hard to see, but yeah that one was pretty bad.
@CHector1997
@CHector1997 3 жыл бұрын
It is an annoying mistake, the correct way is that x-floor(x)=1 is impossible because floor(x)+1>x (definition of floor function).
@Horinius
@Horinius 3 жыл бұрын
LOL Since Michael has made a silly mistake and didn't spot it 🤣
@JM-us3fr
@JM-us3fr 3 жыл бұрын
Sometimes I think he puts these mistakes in there on purpose
@Horinius
@Horinius Жыл бұрын
@@JM-us3fr There is purely not true. If you are following Michael's videos enough, you would have seen that he has made quite a lot of mistakes and most of the time, he even didn't spot them at all.
@b1akk-b7p
@b1akk-b7p 3 жыл бұрын
Interesting problem: Show that for any natural n there exist natural a and b such that n = floor(3^a/2^b)
@nanamacapagal8342
@nanamacapagal8342 Жыл бұрын
My mind went straight to vectors and span ang logs and idk why it did, it just did The plan was to use î = [log3; 0] and ĵ = [0, log(1/2)] and somehow prove that all the natural numbers can be pinned to a lattice point in quadrant 1 this does not feel like the correct way to approach this
@roberttelarket4934
@roberttelarket4934 3 жыл бұрын
Mike I'd damn think after your marathon there wouldn't be a video until June, 2022!
@Bodyknock
@Bodyknock 3 жыл бұрын
Regarding x=0 and n=0, normally either 0^0 is left undefined or it's defined to be equal to 1. (For instance, in combinatorics, 0^0 = 1 is a useful definition because it corresponds to the number of permutations of the empty set.) I can't think of any contexts off-hand where 0^0 would be defined to be any number other than 1, when it's defined at all. So assuming you define 0^0 = 1, then 0^0 - Floor(0) = 1 which would mean x=0 and n=0 is not a solution.
@Lucaazade
@Lucaazade 2 жыл бұрын
In every context where 1 and 0 are symbols referring to different objects, for every object a, a^0 = 1 ≠ 0 is completely obvious. There is a concept entirely unrelated to the value a^0 = 1, in calculus where “0^0 is an indeterminate form” means limits lim f(x) → 0 and lim g(x) → 0 is not enough information to evaluate the limit lim f(x)^g(x).
@Bodyknock
@Bodyknock 2 жыл бұрын
@@LucaazadeYes, and of course for all non-zero a you have 0^a = 0. So on the one hand you have a set of functions of the form Fa(x) = x^a and also another set of functions Ga(x) = a^x. F and G are both well defined sets of functions for all non-zero a and x, and for all non-zero x you have Fa(0) = 0 and Ga(0) = 1. So the question then is what is F0(0) and G0(0) ? Note that if they have a value it is the same one because F0(0) = 0^0 and G0(0) = 0^0. It’s ok to define 0^0 as a number if you wanted to, but whatever choice you make is going to make either F0 or G0 discontinuous. It’s just that choosing 1 if you choose anything at all happens to work out nicely in practice in a lot of practical contexts.
@sharmilasharma3227
@sharmilasharma3227 3 жыл бұрын
I challenge every one to solve the problem of floor function on the floor.
@aayushsharma1345
@aayushsharma1345 3 жыл бұрын
Thank God the problem didn't include the ceiling function😂.
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
@@aayushsharma1345 Floating Michael Penn then 😂
@aahaanchawla5393
@aahaanchawla5393 3 жыл бұрын
Round function would involve jumping from one place to another depending on the case
@pardeepgarg2640
@pardeepgarg2640 3 жыл бұрын
Lmao , I lose 😹😹😹
@Maya-yy4ye
@Maya-yy4ye 3 жыл бұрын
@Aayush Sharma 🤣🤣
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
6:40 thank u mst michael for teach me that 0 > 1 all these years i was wrong !!!! 😥
@cicik57
@cicik57 3 жыл бұрын
so i guess it can be done shorter, just to note 0^0 -> 1 so x=0 and n= 0 does not match, n = 1 is evuivalent to {x} >0 means x is not natural, then you will gen difference in n then if n = 2 ,x = 2 or x > 3 is already too big , and if n = 3, x >= 2 is alreaty too big
@shivam5105
@shivam5105 3 жыл бұрын
Great video, would never have thought of using those seemingly trivial inequalities
@ronbannon
@ronbannon 4 ай бұрын
Rewrite the problem as x^n - n = floor(x), graph the floor(x), and you see that the x^n-n intersects the floor on the interval between 1 and 2. Only two exceptions occur y = x -1 never equals the floor(x), and y = x^2 -2 equals the floor in two spots. All solutions are of the form x=(n+1)^(1/n), with only one exception, x=n=2.
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
HOMEWORK : Find all real values of x such that 2 sin(x) = x² -4x + 6. SOURCE : 2015 W.J. Blundon Contest
@arundhatimukherjee
@arundhatimukherjee 3 жыл бұрын
x²-4x+6 = (x-2)²+2 which is always greater than or equal to 2, whereas 2 sinx is always less than or equal to 2. Therefore, for some real x, if exists, they both must be equal to 2 (x-2)²+2=2 implies x=2; however 2sin2 is not equal to 2. So no real solution exists.🙂
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
SOLUTION *SIKE, there's no solution* Completing the square we see that x² −4x + 6 = (x−2)²+ 2 ≥ 2. So the right hand side of the equation is greater than or equal to 2 for all values of x. It is equal to 2 only when x = 2 (and greater than 2 for all other values of x). The left hand side of the equation 2 sin(x) is less than or equal to 2 for all values of x. The left hand is equal to 2 for x = ..., −3π/2, π/2, 5π/2, .... The equation could only be true if there are values of x which simultaneously make both sides equal 2. But this is not possible.
@pardeepgarg2640
@pardeepgarg2640 3 жыл бұрын
@@goodplacetostop2973 thanks for problem solvable for me But real challenge must for Imaginary solutions :?
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
@@pardeepgarg2640 You can go ahead and try to find solutions for complex numbers if you want to. I wont bring any solution for that though, this is left for the viewer like 😉
@titassamanta6885
@titassamanta6885 3 жыл бұрын
Min value of the quadratic expression is 2. But sin x is less that or equal to 1. So, no solutions.
@hoanglaikhanh1383
@hoanglaikhanh1383 3 жыл бұрын
I bring a much more easier solution: x^n= floor(x) + n then x^n is an integer, so x is an integer. If x is negative, then x^n - floor(x) smaller than zero, but n is not, a contradiction. If x is zero, ez. If x is positive then by induction x^n - floor(x) > x^n - x, which is bigger than n with every x>3, n>2. P/s: This solution is just for speacial case when from the equation we can get x is integer.In another case, i think michael will do it better :)
@piotrbrzezinski243
@piotrbrzezinski243 2 жыл бұрын
your first sentence is false, consider (sqrt(2))^2
@cheerymoya
@cheerymoya 3 жыл бұрын
There is another set of solutions for n=0 and for any x in the interval (1,2)
@DavidSavinainen
@DavidSavinainen 3 жыл бұрын
Isn’t the “single solution” technically an extension of the left solution, the n = 1 case, so that x = (n+1)^(1/n) for n >= 1?
@Jimbob1337
@Jimbob1337 3 жыл бұрын
If x=1, n=0. (1^0=1, 1-1=0) If x=2, n=2. (2^2=4, 4-2=2) n cannot be equal to 1 because if it were, the index is ignored and x-x=0, which is clearly not the case. If n is greater than 2, then x cannot be resolved because even 1^3 - 1 = 0. 8-2, 27-3, 64-4 etc. Likewise x cannot be greater than 2 because the reduction does not equal n. 3^0=1, 1-3=-2. 3^1=3, 3-3=0. 3^2=9, 9-3=6 etc.
@mikegallegos7
@mikegallegos7 3 жыл бұрын
Another nice ride ! Thanks, Prof.
@goodplacetostart9099
@goodplacetostart9099 3 жыл бұрын
Good Place To Start At 0:02
@CM63_France
@CM63_France 3 жыл бұрын
Hi, 4:15 : you didn't mistake, this time. x:xx : good place to continue For fun: 1 "ok, great". I am looking for a function that would equal the infinite product: f(x) = (1-x³)(1-x³/8)(1-x³/27)...(1-x³/n³)... I suppose you guess what I am looking for. Any Idea? Thanks you very much for that marathon last sunday.
@lisandro73
@lisandro73 3 жыл бұрын
Wait, why 1 bigger or equal to 0 is a contradiction?
@CM63_France
@CM63_France 3 жыл бұрын
I noticed this, but I am too lazy to watch the video again.
@benlovesrainie
@benlovesrainie 3 жыл бұрын
I am wondering if 0^0 is undefined rather than equal to 0......
@Bodyknock
@Bodyknock 3 жыл бұрын
0^0 is normally either left undefined or defined as 1 depending on the context. For example, in combinatorics it's useful to define 0^0 = 1 since 1 is the number of permutations of the empty set. I'm not aware of any situations where 0^0 is defined to be 0, I think there's too many scenarios where the natural value for it would be 1 for it to be assigned a different value.
@hydra147147
@hydra147147 3 жыл бұрын
Regarding (n+1)^(1/n) as a family of solutions, we should prove that the floor of this number is indeed 1.
@pratikmaity4315
@pratikmaity4315 3 жыл бұрын
So our claim is that (n+1)≤2^n for all n€N. We will use induction to prove this. n=1 is true. Assume that the statement is true for some n=k€N. So k+1≤2^k. Now k+2=(k+1)+1≤2^k+1
@hydra147147
@hydra147147 3 жыл бұрын
@@pratikmaity4315 Yes, this is also the Bernoulli inequality for x=1 (which is similarly proven by induction).
@Triple_Trouble739
@Triple_Trouble739 2 жыл бұрын
@@pratikmaity4315 The claim has to be strictly less than, otherwise we can get the floor(x) = 2, but otherwise, you are correct.
@pratikmaity4315
@pratikmaity4315 2 жыл бұрын
@@Triple_Trouble739 I didn't write the claim keeping the problem in mind....I mean in general for any natural n (n+1)≤2^n for n=1 equality holds basically
@UltraMaXAtAXX
@UltraMaXAtAXX 3 жыл бұрын
Maybe a video on the Sylow subgroups for groups of order 69 and 420?
@stevenwilson5556
@stevenwilson5556 3 жыл бұрын
6:42 1 ≥ 0 is a contradiction… hmm I guess I need to refresh my math skills, I was not aware of this fact…
@seroujghazarian6343
@seroujghazarian6343 3 жыл бұрын
1:53 Because 1 totally equals 0. Totally.
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
it does in the field with one element (:
@seroujghazarian6343
@seroujghazarian6343 3 жыл бұрын
@@schweinmachtbree1013 ik. I'm just talking about /R. ;)
@nanamacapagal8342
@nanamacapagal8342 Жыл бұрын
This is mostly just from experimentation and I haven't formally proved this, but I figured X = - (N - 2)^(1/N) for even N might work.
@not_vinkami
@not_vinkami 3 жыл бұрын
4:44 I love how he spelled "eaeh"
@zealot2147
@zealot2147 3 жыл бұрын
I figured out n=2 x=sqrt(3) on my own but didn't realize it was part of a whole family of solutions on (1,inf)
@koenth2359
@koenth2359 3 жыл бұрын
1:40 regardless whether you consider 0 a natural number, 0^0 is an indeterminate form, for that reason it is not correct to say that (x=0, n=0) is a solution.
@PlutoTheSecond
@PlutoTheSecond 3 жыл бұрын
It's an indeterminate form for use with limits in calculus. Other areas of math, especially combinatorics, define 0^0 as being equal to 1. There is an argument that the value of an expression is distinct from the use of that expression as a limiting form. You can find it in a Wikipedia article specifically on 0^0.
@koenth2359
@koenth2359 3 жыл бұрын
@@PlutoTheSecond Even if you would define 0^0=1, (x=0, n=0) is not a solution, regardless whether 0 is a natural number. Michael would at least have spent some words to the conundrum, so I think he was not aware of it in the moment and just assumed 0^0=0.
@Basedgwad
@Basedgwad 7 ай бұрын
graphical method make it surprisingly easy
@wyboo2019
@wyboo2019 3 жыл бұрын
x=0 & n=0 gives 0^0 on the LHS and that's VERY iffy to say 0^0=0
@wyboo2019
@wyboo2019 3 жыл бұрын
at 6:40 you say "1 >= 0 which is a contradiction," but 1 IS >= 0
@RandomBurfness
@RandomBurfness 3 жыл бұрын
1:47 0^0 is undefined!
@Sxilder1k
@Sxilder1k 3 жыл бұрын
I thought it was well accepted that 0**0 should be 1, not 0…
@Sxilder1k
@Sxilder1k 3 жыл бұрын
@Andrew Layton in any case, it should not be considered as 0, and hence be a solution, should it?
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
@Andrew Layton 0^0 is only undefined in the context of limits of functions. In the context of arithmetic of numbers, which is the context in this video (as there is no limits/calculus in the video), 0^0 is 1
@gustavinho1986
@gustavinho1986 3 жыл бұрын
There is a simple way to show that there is no solution for x>=2 and n>2. For that, n=x^n-[x]>=[x]([x]^(n-1)-1)>=2(2^(n-1)-1). This implies that n+2>=2^n, which is only true for n={1,2}. Thus, when n>3 the solutions must have [x]=1, what give us x=(n+1)^(1/n), (n>2). We are still left to consider the cases where n={1,2} and x>=1. We can see that there is no solution for n=1, since 1=x-[x]
@WhattheHectogon
@WhattheHectogon 3 жыл бұрын
6:40, how is 1 >= 0 a contradiction? Great video!
@warmpianist
@warmpianist 3 жыл бұрын
You can check in the original equation x - floor(x) = 1, which obviously has no solutions.
@ChrisVenus
@ChrisVenus 3 жыл бұрын
@@warmpianist If you look at n= 1 in the original equation you are right that it doesn't work. I don' think that means that 1 >= 0 is a contradiction though. Like, putting n = 1 into the equation works. The equation correctly evaluates to 1 >= 0. That doesn't contradict anything itself...
@warmpianist
@warmpianist 3 жыл бұрын
@@ChrisVenus actually on the factorization step floor(x)^n-1 won't work for n = 1 anyways.
@leiferikson850
@leiferikson850 3 жыл бұрын
1 >= 0 means 1 is either bigger OR equal to 0. However, 1 is NOT equal to 0.
@MushookieMan
@MushookieMan 3 жыл бұрын
@@leiferikson850 There's no contradiction. 1 is indeed greater than or equal to zero.
@roboto12345
@roboto12345 3 жыл бұрын
Try the APMO 2021 P1
@nocontextmuhtar1750
@nocontextmuhtar1750 3 жыл бұрын
Hey i want to suggest a problem how do i do that?
@MathElite
@MathElite 3 жыл бұрын
Awesome suggestion Good Place To Stop! I really like the title too
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
😎
@pardeepgarg2640
@pardeepgarg2640 3 жыл бұрын
@@goodplacetostop2973 😎
@HagenvonEitzen
@HagenvonEitzen 3 жыл бұрын
But if n=0 and 0 n
@utkarshsharma9563
@utkarshsharma9563 3 жыл бұрын
Hey I heard today that the Riemann hypothesis has been solved by a mathematician in Hyderabad, India. Does anyone know anything about it? I haven't found much on the internet
@utkarshsharma9563
@utkarshsharma9563 3 жыл бұрын
@@last3239 but I read that he's a physicist or something. Did you read the paper? I can't understand all that stuff yet so I couldn't read it
@TrimutiusToo
@TrimutiusToo 3 жыл бұрын
X=0 n=0 cannot be a solution, because 0^0 is undefined
@xiaoshou6752
@xiaoshou6752 3 жыл бұрын
Yeah, I was thinking the same...
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
actually 0^0 = 1, but it is true that we still don't get a solution
@xiaoshou6752
@xiaoshou6752 3 жыл бұрын
@@schweinmachtbree1013 That's absolutely untrue, it can be proven that defining 0^0 is nonsense. It is however true that the limit of x^x as x -> 0+ equals 1.
@TrimutiusToo
@TrimutiusToo 3 жыл бұрын
@@xiaoshou6752 it is also true that limit of (0)^x as x -> 0 equals to 0 That is why it is undefined, because depending on how you approach 0 you will get different answers
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
@@xiaoshou6752 0^0 is only undefined in the context of limits/calculus, and there is no calculus in this video. In algebra, anything to the power of 0 is an empty product, which is equal to 1 (more abstractly, in any monoid, anything to the power of 0 is the identity element). You can find discussion of 0^0 = 1 on wikipedia, for example.
@byronwatkins2565
@byronwatkins2565 3 жыл бұрын
I know this is picky, but 1 is not in the half-closed interval [0, 1)...
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
that's not picky :) it is good to point "technical" things like this out because they can often cause part of a proof to be invalid (which most of the time is easily fixed by dealing with a particular case on its own; for example with intervals you might have to make a separate little argument for the endpoints than for the interior).
@byronwatkins2565
@byronwatkins2565 3 жыл бұрын
@@schweinmachtbree1013 In this case making both ends open, [0, 1], fixes the problem.
@ezequielangelucci1263
@ezequielangelucci1263 3 жыл бұрын
hi michael, last days i was doing a problem but i dont know how to solve it x-floor(x)=1/x
@Mathcambo
@Mathcambo 3 жыл бұрын
Good teacher
@Legerine
@Legerine 3 жыл бұрын
don't changing it from X to Floor of X change the equation?
@matthieumoussiegt
@matthieumoussiegt 3 жыл бұрын
6:42 1>0 a contradiction 🤔
@roberttelarket4934
@roberttelarket4934 3 жыл бұрын
If you're on the top of the Empire State Building elevator going down you should be doing a floor equation!
@sinecurve9999
@sinecurve9999 3 жыл бұрын
6:48 but 1>0...
@mrrashedali
@mrrashedali 3 жыл бұрын
Nice shirt
@MicheleCaine
@MicheleCaine 3 жыл бұрын
Here is my challenge for you. Find f(x) such that : ceil(f(floor(x))) = floor(f(ceil(x))) for x natural in [0,1) if there exists
@michaelcampbell6922
@michaelcampbell6922 2 жыл бұрын
A: If you don’t consider 0 to be a natural number, there are no solutions B: If you consider 0 to be a natural number, then 0 is the only one, so floor(x)=ceil(x)=0, and so ceil(f(0))=floor(f(0)). This means that f(0)=n with n in integers. This means that f(x)=ax^b +n for a in nonnegative integers and b in positive integers C: If you meant integers in that range, same solution as B D: If you meant rational or real numbers in that range, then the only solutions are f(x)=n for n in integers
@siddharthbharadwaj3221
@siddharthbharadwaj3221 3 жыл бұрын
0⁰ is an indeterminate value, right? 1:54
@PlutoTheSecond
@PlutoTheSecond 3 жыл бұрын
There are examples in math (e.g. combinatorics) where 0^0 is defined as 1. It still does not yield a solution here though because 1 ≠ 0.
@roberttelarket4934
@roberttelarket4934 3 жыл бұрын
If it's a hot summer day and you're at the beach without paper and pencil it's great place to do a floor equation on the sand with your finger!
@Alex_Deam
@Alex_Deam 3 жыл бұрын
Not if you're Archimedes being approached by a Roman soldier (supposedly)
@roberttelarket4934
@roberttelarket4934 3 жыл бұрын
@@Alex_Deam: I didn't expect anyone to know that about Archimedes.
@Alex_Deam
@Alex_Deam 3 жыл бұрын
@@roberttelarket4934 Pretty sure it was in a kids' pop maths book that got me into maths and hence years later watching channels like this lol
@guilhermefranco2949
@guilhermefranco2949 3 жыл бұрын
And to think there's a chance of we being alive when they prove Riemann Hypothesis, what about it, Hilbert?
@emanuellandeholm5657
@emanuellandeholm5657 3 жыл бұрын
RH could be undecidable.
@zeranderman4170
@zeranderman4170 3 жыл бұрын
The first solution i can think of is x=1 and n=0
@nastrimarcello
@nastrimarcello 3 жыл бұрын
I think something is wrong in this part here: X^n=n , x=0, n=0. Because 0^0 is undefined (and not 0, right?). Then it follows that X^n is undefined.
@Bodyknock
@Bodyknock 3 жыл бұрын
Sometimes authors define 0^0 = 1 depending on the context. In combinatorics for instance defining 0^0 = 1 is useful because it corresponds to the numbers of permutations of the empty set. Whether or not it's defined therefore is a matter of what's most convenient for the subject at hand.
@nastrimarcello
@nastrimarcello 3 жыл бұрын
@@Bodyknock thanks for the input, but does 0^0 equals to 1 or is undefined? I don't see this in the video
@Bodyknock
@Bodyknock 3 жыл бұрын
@@nastrimarcello In the video he said he was leaving it up to the viewer if you wanted to define 0^0 or not. In fact if you define 0^0 = 1 it's still not a solution to the video's problem with x=0 and n=0 because 0^0 - Floor(0) = 1 which doesn't equal n=0. So really it doesn't matter much in this case, you get the same result either way.
@itays7774
@itays7774 3 жыл бұрын
bruh you're presenting 0^0=0 as a possible solution just like that
@brsram
@brsram 3 жыл бұрын
X= 0, n = 0? What is 0^0????
@noumanegaou3227
@noumanegaou3227 3 жыл бұрын
But 0^0 is not define
@mcwulf25
@mcwulf25 3 жыл бұрын
Nice
@sgdufbaoaah8692
@sgdufbaoaah8692 3 жыл бұрын
f(x)=[ax^2 + b]^3 and f[g(x)]=g[f(x)] . Find g(x) ? help me please.
@MicheleCaine
@MicheleCaine 3 жыл бұрын
consider g(x)=f^-1 (x) then solve for x
@sgdufbaoaah8692
@sgdufbaoaah8692 3 жыл бұрын
@@MicheleCaine thank you brother
@kruksog
@kruksog 3 жыл бұрын
0 is not a natural! Rahhhh! If zero had to be invented/discovered, it's not natural.
@helo3827
@helo3827 3 жыл бұрын
mistake at 1:38 and 2:22, anything to the power of 0 is 1.
@viniciuscastro4957
@viniciuscastro4957 3 жыл бұрын
x=0, n=0 is not a solution. 0^0...
@facr
@facr 3 жыл бұрын
This video is a contradiction or greater than a contradiction.
@amirb715
@amirb715 3 жыл бұрын
at 1:54, 0^0=exp(0*ln(0)) is not equal to 0
@МихаилУжов-е2й
@МихаилУжов-е2й 3 жыл бұрын
For real? 0^0, does it make sense? I've been taught that this is uncertainty.
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
0^0 is undefined in the context of limits of functions, but the number 0 to the power of 0 is 1. See the wikipedia article Zero to the Power of Zero if you're interested :)
@DavidCodyPeppers.
@DavidCodyPeppers. 3 жыл бұрын
God Loves You and so do I. Peace! \o/
@lisandro73
@lisandro73 3 жыл бұрын
I thought 0 to the power of 0 has no solution
@juliopuerta5049
@juliopuerta5049 3 жыл бұрын
4:49 if n-1, n-2, or n-3, or... is/are negative, the floor of x raised to it isnt bigger than 1, right??
@roberttelarket4934
@roberttelarket4934 3 жыл бұрын
Sorry I have no intention of doing any homework. I stopped that in 1973!
@ourgoalisto6737
@ourgoalisto6737 3 жыл бұрын
No Goals here , sorry
@chritophergaafele8922
@chritophergaafele8922 3 жыл бұрын
What can these problems be used for (Application), Computer science, biology, chemistry or in Physics
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
this is Pure Math channel I'm afraid xD
@ahmadkalaoun3473
@ahmadkalaoun3473 3 жыл бұрын
0 to the 0 th power is undefined Great video :)
@udic01
@udic01 3 жыл бұрын
6:45 1>=0 is not a contradiction. But if n=1 we get x-[x]=1 and that is impossible because {x} is in [0,1) 1:47 0^0 is undefined!!!!!
@YaamFel
@YaamFel 3 жыл бұрын
0^0 is usually defined to be 1 in analysis
@udic01
@udic01 3 жыл бұрын
@@YaamFel even so it isn't a solution to the equation...
@YaamFel
@YaamFel 3 жыл бұрын
@@udic01 It's not, but your reasoning for why it's not is still wrong. I never claimed it was a solution either
@thibaud5764
@thibaud5764 3 жыл бұрын
Just I'm not sure but isn't 0⁰ not defined like it's either 0 or 1 ? Or am I wrong
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
The number zero to the power of the number zero is one (there are several ways of seeing this - you can read the wikipedia article Zero to the Power of Zero if you are interested), but people will often leave 0^0 undefined because in the context of limits it is indeterminate: if f and g are continuous functions which take the value 0 at some number b, i.e. f(b) = g(b) = 0 and lim_{x->b} f(x) = lim_{x->b} g(x) = 0, then the limit as x->b of f to the power of g is not determined; it can take many different values depending on what f and g are, e.g. we could have lim_{x->b} f(x)^(g(x)) = 1, or lim_{x->b} f(x)^(g(x)) = 0, and in fact this limit can take any value, or it may not exist at all. But to reiterate, although the expression 0^0 is indeterminate in the context of limits/calculus, there is no limits/calculus in this video, so here 0^0 equals 1 (and so the case n=0 does not actually give a solution to the equation in the video)
@thibaud5764
@thibaud5764 3 жыл бұрын
@@schweinmachtbree1013 thank you a lot I now understand the mistake I make ( talking about limit in an algebra problem). It helps me a lot !
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
@@thibaud5764 you’re welcome :)
@michamazur2179
@michamazur2179 3 жыл бұрын
How 0^0=0?
@giovanicampos4120
@giovanicampos4120 3 жыл бұрын
1:45 ok if I consider x = n = 0 as a solution, then I get 0⁰ = 0 and that's my favourite identity in math ❤️
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
en.wikipedia.org/wiki/Zero_to_the_power_of_zero
@YTCalynk
@YTCalynk 3 жыл бұрын
1:53 0^0 is undefined, so it cannot be a solution.
@jimschneider799
@jimschneider799 3 жыл бұрын
At 1:50 - no, x = n = 0 is not a solution, because 0^0 is undefined.
@JalebJay
@JalebJay 3 жыл бұрын
n=0 shouldn't be a solution as 0^0 holds no value.
@Bodyknock
@Bodyknock 3 жыл бұрын
Actually in some contexts authors define 0^0 = 1. For instance, in combinatorics it's useful to define 0^0 = 1 since the number of permutations of the empty set is 1. So really it just depends on the situations and the author whether or not 0^0 is undefined or defined to be 1.
@angelowentzler9961
@angelowentzler9961 3 жыл бұрын
But… 0^0 is undefined
@arimermelstein9167
@arimermelstein9167 3 жыл бұрын
0^0 is undefined, no?
@ezequielangelucci1263
@ezequielangelucci1263 3 жыл бұрын
si
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
@@ezequielangelucci1263 no
@ezequielangelucci1263
@ezequielangelucci1263 3 жыл бұрын
@@schweinmachtbree1013 yes, it is
@schweinmachtbree1013
@schweinmachtbree1013 3 жыл бұрын
@@ezequielangelucci1263 no, it isn't. 0^0 = 1.
@ezequielangelucci1263
@ezequielangelucci1263 3 жыл бұрын
@@schweinmachtbree1013 demostrate it
@luizgilbertooliveiramessia2217
@luizgilbertooliveiramessia2217 3 жыл бұрын
I think the same 0^0 is undefined. Is not a solution.
a floor equation.
15:11
Michael Penn
Рет қаралды 58 М.
Solving a crazy iterated floor equation.
22:38
Michael Penn
Рет қаралды 142 М.
БУ, ИСПУГАЛСЯ?? #shorts
00:22
Паша Осадчий
Рет қаралды 2,8 МЛН
СКОЛЬКО ПАЛЬЦЕВ ТУТ?
00:16
Masomka
Рет қаралды 3,1 МЛН
Long Nails 💅🏻 #shorts
00:50
Mr DegrEE
Рет қаралды 4,5 МЛН
A few of my favorite things!
13:06
Michael Penn
Рет қаралды 31 М.
Too hard for the IMO? Too easy?
24:20
Michael Penn
Рет қаралды 98 М.
Harvard and MIT challenge you to solve this problem!
12:03
Michael Penn
Рет қаралды 76 М.
A very classic number theory problem
12:52
Michael Penn
Рет қаралды 62 М.
Math News: The Bunkbed conjecture was just debunked!!!!!!!
14:59
Dr. Trefor Bazett
Рет қаралды 277 М.
What primes make each of these integers?
15:10
Michael Penn
Рет қаралды 16 М.
The longest mathematical proof ever
19:30
Dr. Trefor Bazett
Рет қаралды 86 М.
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 893 М.
Brushing up on some classic tricks.
10:09
Michael Penn
Рет қаралды 27 М.
How on Earth does ^.?$|^(..+?)\1+$ produce primes?
18:37
Stand-up Maths
Рет қаралды 405 М.
БУ, ИСПУГАЛСЯ?? #shorts
00:22
Паша Осадчий
Рет қаралды 2,8 МЛН