A Nice Diophantine Equation | 3ˣ - x³ = 1

  Рет қаралды 18,769

SyberMath

SyberMath

Күн бұрын

Пікірлер: 38
@misterdubity3073
@misterdubity3073 Жыл бұрын
There is also a non-integer solution at x = -0.84584 approx. Nice graph on Desmos 3^x vs x^3 + 1
@ubncgexam
@ubncgexam Жыл бұрын
There is also a 4th solution at x ≈ 3.2206447... 😉
@misterdubity3073
@misterdubity3073 Жыл бұрын
@@ubncgexam Good pick up. I didn't see it because I graphed what I graphed. Graphing 3^x - x^3 - 1 shows the zeros nicely.
@MrGeorge1896
@MrGeorge1896 Жыл бұрын
Exponential growth beats polynomial growth so we just have to examine x = 0, 1, 2 and 3 and show that for x >=4 the LHS is strictly increasing. Negative values for x can be rejected as we would get fractions on the LHS.
@premkumarsr4021
@premkumarsr4021 Жыл бұрын
Beautiful. No words to express my happiness
@SyberMath
@SyberMath Жыл бұрын
Glad to hear that! 🥰🧡
@andypandy6063
@andypandy6063 Жыл бұрын
This one was really fun.
@MR..mohamedelsayed
@MR..mohamedelsayed Жыл бұрын
The equation has 4 solutions if we follow the analytical solution. We notice that the (3^x) exponential function intersects with (x^3+1) the real function. There are 4 points, two of which are easily accessible either by trial or by methods that we might consider algebraic, which are {0, 2}. However, there are two other solutions. Can we reach them through algebraic methods and not graphical? This is the topic of research and discussion. Thank you to the channel owner for the ideas presented.
@scottleung9587
@scottleung9587 Жыл бұрын
I also got both 0 and 2, but I just plugged them in.
@SyberMath
@SyberMath Жыл бұрын
Quoting John Scott: "Scott Leung's solution is best. Hands down. Always try this first when integers are required."
@johnscott3484
@johnscott3484 Жыл бұрын
Scott Leung's solution is best. Hands down. Always try this first when integers are required.
@SyberMath
@SyberMath Жыл бұрын
😉😁
@scottleung9587
@scottleung9587 Жыл бұрын
Thanks so much!
@nasrullahhusnan2289
@nasrullahhusnan2289 7 ай бұрын
x=2 as (3^x)-x³=3²-2³ =9-8=1
@pedrovargas2181
@pedrovargas2181 Жыл бұрын
x = {0,2}, by try-and-fail. Third root, no idea. 8:40. a = 0.
@goldfing5898
@goldfing5898 Жыл бұрын
9:32 The solution x = 0 can easily be found by guessing, also the solution x = 2. I would use graphs of the functions to watch for potential other solutions, and maybe some calculus.
@tontonbeber4555
@tontonbeber4555 Жыл бұрын
It's more interesting to solve it in reals ... 4 solutions :))
@SG49478
@SG49478 Жыл бұрын
I have an issue with this method. Transforming an equation into a system of equations is not an equivalent transformation and has the potential for losing solutions. Your method finds 2 solutions, but lacks proof that there is no third one. Luckily there are no other integer solutions because it is relatively easy to proof that for x>2 the difference of 3^-x^3 is consistently increasing. To come up with 0 and 2 as solutions for x there are less complicated ways to do that. I like the approach of Random Jin, which is more straight forward and also includes proof, that there are no other solutions.
@SyberMath
@SyberMath Жыл бұрын
Factoring shows there are no others
@SG49478
@SG49478 Жыл бұрын
@@SyberMath I can't really follow you. Where did you factor the equation 3^b+3^a+1=3^2a+3? The equation itself is a sum.
@jpbobinus1377
@jpbobinus1377 Жыл бұрын
Please, why is this equation diophantine?
@SyberMath
@SyberMath Жыл бұрын
We are only interested in integer solutions
@msmbpc24
@msmbpc24 Жыл бұрын
X=0 or X=2
@zawatsky
@zawatsky Жыл бұрын
До сих пор не понимаю, зачем расписывать решение уравнения, которое решается простой подстановкой.
@-rahul-2908
@-rahul-2908 Жыл бұрын
huh? what's the substitution
@zawatsky
@zawatsky Жыл бұрын
@@-rahul-2908 ну, я просто сначала подставил 3, а когда не получилось - 2. )
@-rahul-2908
@-rahul-2908 Жыл бұрын
@@zawatsky Ah, okay - хорошо
@vladimirkaplun5774
@vladimirkaplun5774 Жыл бұрын
As at x=4 3^4=81 while 4^3 is just 64 and (x+1)^/x^3 is definitely less than 4 only x=0,1,2,3 should be tested. No number theory, nothing
@SyberMath
@SyberMath Жыл бұрын
Nice!
@kianmath71
@kianmath71 Жыл бұрын
X =2
@PROTAEQUESO98
@PROTAEQUESO98 Жыл бұрын
x = 2
@walterwen2975
@walterwen2975 Жыл бұрын
A Nice Diophantine Equation: 3^x - x^3 = 1; Find the integer solutions of x 3^x - x^3 = 1; 3^x > x^3, x ≠ 1, 3 > x ≥ 0 First method: When: x = 0; 3^x - x^3 = 3^0 - 0 = 1; Confirmed When: x = 2; 3^2 - 2^3 = 9 - 8 = 1; Confirmed Second method: Let: x = 2y 3^x - x^3 = 3^2y - (2y)^3 = (3^2)^y - (2^3)(y^3) = 9^y - 8(y^3) = 1 When: y = 0, x = 2y = 0; 3^x - x^3 = 9^y - 8(y^3) = 9^0 - 8(0) = 1; Confirmed When: y = 1, x = 2y = 2; 3^x - x^3 = 9^1 - 8(1^3) = 9 - 8 = 1; Confirmed Final answer: x = 0 or x = 2
@jmlfa
@jmlfa Жыл бұрын
I don't get it. It took me two seconds to figure out that x=0.
@MushookieMan
@MushookieMan Жыл бұрын
But that's only one solution...
@GsBabu-sk6iv
@GsBabu-sk6iv Жыл бұрын
Roger is bad at math.
@Allstuffthatfascinates
@Allstuffthatfascinates Жыл бұрын
Today I did a proof of geometry on my own. Theorem: In every triangle, at least one altitude from one of the vertices lies inside it. Proof by me: Let ΔABC be a triangle that has all it’s altitudes lying outside it. We know that if an angle of a triangle is obtuse, then altitudes from other two vertices lie outside the triangle. Now since all altitudes of ΔABC lie outside, then at least two of it’s angles must be obtuse. So, let ∠A and ∠B be obtuse. ⇒ ∠A+∠B>90∘+90∘ ⇒∠A+∠B>180∘ ⇒∠A+∠B+∠C>180∘ But, ∠A+∠B+∠C=180∘ So, we arrive at a contradiction and our assumption was wrong. ⇒ No two angles in a triangle can be obtuse and at least one altitude of every triangle lies inside it. Hence Proved. Thanks.
@ubncgexam
@ubncgexam Жыл бұрын
And I prooved the Rieman's hypothesis... But as once Fermat stated "the margin is too small to write it down"😂😂😂... WTH you are proving? 😮🙄🙄
@rakenzarnsworld2
@rakenzarnsworld2 Жыл бұрын
x = 2
Comparing 4^4^4^4 and 2^10^152
9:31
SyberMath
Рет қаралды 7 М.
An Interesting Non-standard Equation
10:54
SyberMath
Рет қаралды 3,3 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
A Nice Diophantine Equation
8:57
SyberMath
Рет қаралды 8 М.
An Interesting Homemade Differential Equation
11:30
SyberMath
Рет қаралды 4,3 М.
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 220 М.
A Diophantine Equation With Radicals
9:25
SyberMath
Рет қаралды 10 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 4 МЛН
Another Nice Exponential Equation, 2^{x/2}=x
9:04
SyberMath
Рет қаралды 21 М.
two ways, one sum
14:03
Michael Penn
Рет қаралды 10 М.
An Interesting System of Differential Equations
8:41
SyberMath
Рет қаралды 1,9 М.
An amazing thing about 276 - Numberphile
15:39
Numberphile
Рет қаралды 465 М.
A Very Interesting Exponential Equation | 1ˣ = -1
8:58
SyberMath
Рет қаралды 220 М.