A nice problem from the 2012 math olympiad

  Рет қаралды 19,845

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 39
@mathflipped
@mathflipped 2 жыл бұрын
Olympiad problems involving integers have always been my favorite. Great video, Michael!
@udic01
@udic01 2 жыл бұрын
3:14 and you also need check for n=3... Because the inequality holds for n>3 and not for n>=3.
@dyld921
@dyld921 2 жыл бұрын
Not really, when n=3, the >= right before that turns into a strict >, i.e. (n+1)^n > (n+1)^2 >= 5n+1
@charlied.4683
@charlied.4683 2 жыл бұрын
Never seen analysing mod n^2 for these exponential vs polynomial equations before but it is super cool!
@aqeel6842
@aqeel6842 2 жыл бұрын
Definitely. There's always a new trick out there, no matter how good you are at math
@bardamu9662
@bardamu9662 2 жыл бұрын
Excellent example of the power using modulo p theory.
@xavi835
@xavi835 2 жыл бұрын
Patxi is an amazing climber, he had recovery from a hard accident and he still climbing in a hard level. I'm climber and mathemsthician as well! (And from Spain)
@m11071997r
@m11071997r 2 жыл бұрын
The first image is the Alhambra of Granada. Saludos!
@jkid1134
@jkid1134 2 жыл бұрын
@@m11071997r never heard a thumbnail called foreplay but you're kinda onto something
@m11071997r
@m11071997r 2 жыл бұрын
@@jkid1134I don't know what do you mean. Who said anything about foreplay? Jajajaja
@MrDestroys
@MrDestroys 2 жыл бұрын
It truly is a nice problem
@speedsterh
@speedsterh 2 жыл бұрын
Not overly technical, solution is easy to follow
@batapanos2027
@batapanos2027 2 жыл бұрын
Let me suggest the way i came up with.... First bring 1 to the other side of the equation and factor ...on LHS..((n+1)-1)( (n+1)^(n-1) + (n+1)^(n-2) +...+1) and see that the first factor is just n so we divide by n and we are left with ..... (n+1)^(n-1) +....+(n+1) = 2n^m-1 +2.. Then by taking modulo n we get that. (1+1+1+1+..+1)..(n-1 times) is congruent to 2 mod n , supposing m is greater than or equal to 2... So we have n-1 congurent to 2 mod n => n is conguent to 3 mon n , which further implies that n divides 3.... The rest is easy..
@forcelifeforce
@forcelifeforce 2 жыл бұрын
Did you mean ... = 2n^(m - 1) + 2 ...?
@themibo899
@themibo899 2 жыл бұрын
if anyone is interested, the thumbnail shows the “Alhambra” in the spanish town of Granada
@uszkaybalazs
@uszkaybalazs 2 жыл бұрын
If we include 0 in the naturals (which is how I've been taught), we get the solution n=0, m€N
@Pavgran
@Pavgran 2 жыл бұрын
And also n=2, m=0
@andy-kg5fb
@andy-kg5fb 2 жыл бұрын
Can you do a video on "friendly" binary sequences, which are sequences where each digit has atleast one 1 next to it.
@advaykumar9726
@advaykumar9726 2 жыл бұрын
How much marks are you getting in ioqm?
@Vikipedia11
@Vikipedia11 2 жыл бұрын
Appreciating the shoutout to Eminem at 0:29.
@donofmath248
@donofmath248 2 жыл бұрын
Nice problem! I did something equivalent - subtracted 1 from both sides, factored the LHS as a difference of nth powers, which gives a factor of (n+1-1)=n, divided both sides by n, and then worked mod n to get that -1 is congruent to 2 mod n.
@goodplacetostop2973
@goodplacetostop2973 2 жыл бұрын
9:20 Es un buen lugar para detenerse
@Chris44351
@Chris44351 2 жыл бұрын
9:20 Und das ist eine gute Stelle zum Anhalten.
@darkmask4767
@darkmask4767 2 жыл бұрын
E questo è un buon posto per smettere
@Neodynium.the_permanent_magnet
@Neodynium.the_permanent_magnet 2 жыл бұрын
C'est l'endroit idéal pour s'arrêter.
@rialtho_the_magnificent
@rialtho_the_magnificent 2 жыл бұрын
9:20 dat is een goed moment om te stoppen
@liliepepe65
@liliepepe65 2 жыл бұрын
Um bom lugar para parar
@alexfekken7599
@alexfekken7599 2 жыл бұрын
7:31: and that is a good place to stop 🙂
@sahiltamang2352
@sahiltamang2352 2 жыл бұрын
Now Homework:- Solving over non-negative integers.
@pedropicapiedra4851
@pedropicapiedra4851 2 жыл бұрын
Michael, we see you from spain too
@ConManAU
@ConManAU 2 жыл бұрын
I like this problem, not just because of the neat solution, but because it’s one of those rare number theory Olympiad problems that isn’t solved by finding an obvious solution and then proving that it’s unique.
@hernando-d
@hernando-d 2 жыл бұрын
Patxi has a baske- spanish name.
@sahiltamang2352
@sahiltamang2352 2 жыл бұрын
Post in your comments
@Macisordi
@Macisordi 2 жыл бұрын
N=0 is a solution, i think in Europe we consider it a natural number!
@charlessmith1931
@charlessmith1931 2 жыл бұрын
Interesting! I guess that's why it is better to say 'positive integers' vs. 'non-negative integers'. In the US, we are taught that the natural numbers are how we naturally count, i.e. 1, 2, 3, ... and that the whole numbers also include zero (which looks like a hole).
@SpartaSpartan117
@SpartaSpartan117 2 жыл бұрын
Math training plan for today: a muerte
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
"He is from Spain and it's cool;)"
@ayoubabid213
@ayoubabid213 2 жыл бұрын
Easy problem . Its a junior level Well here is my solution By the binomial formula (n+1)^n =1+n^2 +n^3 *(n-1)/2 .....+n^n So (n+1)^n =1 mod n^2 Lets suppose that m>=2 So 2n^m +3n+1 = 3n+1 mod n^3 So 1=3n +1 mod n^2 1=3n mod n^2 contradiction if n>1 It sufficed now to study the case when m=1 to find the solution Qed
@goodplacetostart4606
@goodplacetostart4606 2 жыл бұрын
Early
Can you solve this "old-style" problem from 1986?
16:25
Michael Penn
Рет қаралды 45 М.
Can I ever be natural?
13:10
Michael Penn
Рет қаралды 75 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
You, me, and my first International Math Olympiad problem
31:21
blackpenredpen
Рет қаралды 601 М.
Two problems from the world's happiest country.
17:39
Michael Penn
Рет қаралды 10 М.
solve this before it's too late!
16:59
Michael Penn
Рет қаралды 20 М.
A nice number theory problem from an Argentinian math olympiad
11:04
FUN Ecuadorian Math Olympiad Number Theory Problem
19:50
Michael Penn
Рет қаралды 44 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 567 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 421 М.
Russia | Math Olympiad Question | You should know this trick!!
8:01
Can I ever be perfect??
13:45
Michael Penn
Рет қаралды 20 М.