Olympiad problems involving integers have always been my favorite. Great video, Michael!
@udic012 жыл бұрын
3:14 and you also need check for n=3... Because the inequality holds for n>3 and not for n>=3.
@dyld9212 жыл бұрын
Not really, when n=3, the >= right before that turns into a strict >, i.e. (n+1)^n > (n+1)^2 >= 5n+1
@charlied.46832 жыл бұрын
Never seen analysing mod n^2 for these exponential vs polynomial equations before but it is super cool!
@aqeel68422 жыл бұрын
Definitely. There's always a new trick out there, no matter how good you are at math
@bardamu96622 жыл бұрын
Excellent example of the power using modulo p theory.
@xavi8352 жыл бұрын
Patxi is an amazing climber, he had recovery from a hard accident and he still climbing in a hard level. I'm climber and mathemsthician as well! (And from Spain)
@m11071997r2 жыл бұрын
The first image is the Alhambra of Granada. Saludos!
@jkid11342 жыл бұрын
@@m11071997r never heard a thumbnail called foreplay but you're kinda onto something
@m11071997r2 жыл бұрын
@@jkid1134I don't know what do you mean. Who said anything about foreplay? Jajajaja
@MrDestroys2 жыл бұрын
It truly is a nice problem
@speedsterh2 жыл бұрын
Not overly technical, solution is easy to follow
@batapanos20272 жыл бұрын
Let me suggest the way i came up with.... First bring 1 to the other side of the equation and factor ...on LHS..((n+1)-1)( (n+1)^(n-1) + (n+1)^(n-2) +...+1) and see that the first factor is just n so we divide by n and we are left with ..... (n+1)^(n-1) +....+(n+1) = 2n^m-1 +2.. Then by taking modulo n we get that. (1+1+1+1+..+1)..(n-1 times) is congruent to 2 mod n , supposing m is greater than or equal to 2... So we have n-1 congurent to 2 mod n => n is conguent to 3 mon n , which further implies that n divides 3.... The rest is easy..
@forcelifeforce2 жыл бұрын
Did you mean ... = 2n^(m - 1) + 2 ...?
@themibo8992 жыл бұрын
if anyone is interested, the thumbnail shows the “Alhambra” in the spanish town of Granada
@uszkaybalazs2 жыл бұрын
If we include 0 in the naturals (which is how I've been taught), we get the solution n=0, m€N
@Pavgran2 жыл бұрын
And also n=2, m=0
@andy-kg5fb2 жыл бұрын
Can you do a video on "friendly" binary sequences, which are sequences where each digit has atleast one 1 next to it.
@advaykumar97262 жыл бұрын
How much marks are you getting in ioqm?
@Vikipedia112 жыл бұрын
Appreciating the shoutout to Eminem at 0:29.
@donofmath2482 жыл бұрын
Nice problem! I did something equivalent - subtracted 1 from both sides, factored the LHS as a difference of nth powers, which gives a factor of (n+1-1)=n, divided both sides by n, and then worked mod n to get that -1 is congruent to 2 mod n.
@goodplacetostop29732 жыл бұрын
9:20 Es un buen lugar para detenerse
@Chris443512 жыл бұрын
9:20 Und das ist eine gute Stelle zum Anhalten.
@darkmask47672 жыл бұрын
E questo è un buon posto per smettere
@Neodynium.the_permanent_magnet2 жыл бұрын
C'est l'endroit idéal pour s'arrêter.
@rialtho_the_magnificent2 жыл бұрын
9:20 dat is een goed moment om te stoppen
@liliepepe652 жыл бұрын
Um bom lugar para parar
@alexfekken75992 жыл бұрын
7:31: and that is a good place to stop 🙂
@sahiltamang23522 жыл бұрын
Now Homework:- Solving over non-negative integers.
@pedropicapiedra48512 жыл бұрын
Michael, we see you from spain too
@ConManAU2 жыл бұрын
I like this problem, not just because of the neat solution, but because it’s one of those rare number theory Olympiad problems that isn’t solved by finding an obvious solution and then proving that it’s unique.
@hernando-d2 жыл бұрын
Patxi has a baske- spanish name.
@sahiltamang23522 жыл бұрын
Post in your comments
@Macisordi2 жыл бұрын
N=0 is a solution, i think in Europe we consider it a natural number!
@charlessmith19312 жыл бұрын
Interesting! I guess that's why it is better to say 'positive integers' vs. 'non-negative integers'. In the US, we are taught that the natural numbers are how we naturally count, i.e. 1, 2, 3, ... and that the whole numbers also include zero (which looks like a hole).
@SpartaSpartan1172 жыл бұрын
Math training plan for today: a muerte
@SuperYoonHo2 жыл бұрын
"He is from Spain and it's cool;)"
@ayoubabid2132 жыл бұрын
Easy problem . Its a junior level Well here is my solution By the binomial formula (n+1)^n =1+n^2 +n^3 *(n-1)/2 .....+n^n So (n+1)^n =1 mod n^2 Lets suppose that m>=2 So 2n^m +3n+1 = 3n+1 mod n^3 So 1=3n +1 mod n^2 1=3n mod n^2 contradiction if n>1 It sufficed now to study the case when m=1 to find the solution Qed