How about defining c_n such that c_{n+1} = c_n + e^(i*n). Easy to get a formula because it's sequence of partial sums of geometric series and then you find a_n as imaginary part of c_n. Seems more intuitive and less tricky (no guessing).
@rogierbrussee3460 Жыл бұрын
An alternative way to doing this Is and dealing with trigonometric functions, is to use complex exponentials to make things easier. Set q = e^i then sin(n) = Im(q^n) so we get a_{n+1} - a_{n} = sin(n) = Im(q^n). Now we can use that a_n = a_{n-1} + Im(q^{n -1})= = a_{n-2} + Im (q^{n -1} + q^{n-2}) = a_0+ Im(q^0 + q^1 + .. + q^{n-1)) (by easy induction) = a_0 + Im((1 - q^{n})/(1 - q)) (summing a geometric sum) = a_0 + Im( (q^{-1/2} - q^{n -1/2})/(q^{- 1/2} - q^{1/2})) (dividing nominator and denominator by q^{1/2}.= e^{1/2i}) = a_0 + Im( (2i)^{-1} (q^{-1/2} - q^{n -1/2})/((q^{- 1/2} - q^{1/2})/2i)) (dividing nom and denom by 2i ) = a_0 - (1/2sin(1/2)) Re (q^{-1/2} - q^{n-1/2}) (using Im(iz) = - Re(z) and sin(x) = (q^x - q^{-x})/2i) = a_0 - 1/(2sin(1/2)) (cos(1/2) - cos(n-1/2)) or if you prefer a_n = C - cos(n-1/2)/2sin(1/2) = C - (cos(n)cos(1/2) + sin(n)sin(1/2))/2sin(1/2) = C - cos(n)cotan(1/2)/2 -sin(n)/2
@titassamanta6885 Жыл бұрын
Can we use the follwoing method? a_(k+1)-a_k=sin(k). So a_(n+1) -a1= sin(1)+sin(2)+....+sin(n). Now we have a formula for the series on the lhs, which is sin(n/2)(sin((n+1)/2)÷sin(1/2)
@TheEternalVortex42 Жыл бұрын
Yes, recursively defining a simple sum seems kinda pointless.
@bjornfeuerbacher5514 Жыл бұрын
sin(n/2)(sin((n+1)/2)÷sin(1/2)? Where did you get that from?
@titassamanta6885 Жыл бұрын
@@bjornfeuerbacher5514 Actually there is a formula for calculating the sums of the sines of angles in A.P. Theee are multiple ways to derive it.
@bjornfeuerbacher5514 Жыл бұрын
@@titassamanta6885 What does A. P. mean?
@titassamanta6885 Жыл бұрын
@@bjornfeuerbacher5514 arithmetic progression
@SlipperyTeeth Жыл бұрын
Alternatively, take the discrete derivative of sin(x) and of cos(x). They will each yield something of the form Asin(x)+Bcos(x). Then match coefficients.
@SJ-ry6br Жыл бұрын
There are many approaches to this problem, and this one is new to me. Thanks!
@ralvarezb78 Жыл бұрын
this is often resolved using Z transform on signal processing
@kkanden Жыл бұрын
the fade-in at the start is a nice touch!
@kkanden Жыл бұрын
and the fade-out!
@BikeArea Жыл бұрын
A backflip-in and a backflip-out would impress me much more than these veeeery basic fadings. 😉
@gat0tsu Жыл бұрын
thanks alot for making the video. your presentation is very good!
@insouciantFox Жыл бұрын
sin(1)/(2(cos1-1)) = -1/2 cot(1/2) so a(n) can be further simplified into a(n) = -1/2 csc (1/2)cos (n-1/2) +C which I think is much prettier.
@wolfwerewolf4754 Жыл бұрын
How do we know there could be no other sequence that satisfies the original equation? Without such justification the solution looks incomplete...
@Noam_.Menashe Жыл бұрын
There are infinitely many, as a_0 is left unknown.
@shohamsen8986 Жыл бұрын
It's a linear recursion. It shouldn't be too hard to prove uniqueness of solution up to picking a_0. That's what the C does. If u can guess a solution then u are done.
@TheEternalVortex42 Жыл бұрын
Proving uniquness is easy, say b_n is another solution that satisfies the same recurrence. Then a_{n+1} - b_{n+1} = a_n - b_n + sin(n) - sin(n). Thus a_{n+1} - b_n{n+1} = a_n - b_n, so we know a_n - b_n = C for all n. This proves that all solutions are unique up to a constant.
@shohamsen8986 Жыл бұрын
@@TheEternalVortex42i was thinking more like given some seed a_0, if you plug it in, you will get a unique answer. If you construct the recursion relationship u wont get two answers cause the relationship is inherently single valued. There are no square roots type multivalued operations involved.
@CM63_France Жыл бұрын
You can built an infinite number of solutions by taking different values of the constant C. And this constant is nothing but the general solution of the equation without a second member.
@DrR0BERT Жыл бұрын
The matrix is glitching around 3:45.
@rogerkearns8094 Жыл бұрын
Ah, thank you. I paused it just before that to come down and see if anyone else spotted anything wrong.
@msli4882 Жыл бұрын
The core of the problem is the summation of sequence of sin(n), and can be easily calculated from the summation of sequence of e^(i n)
@davidmelville5675 Жыл бұрын
That was off its chops!! Love it.
@papanujian7758 Жыл бұрын
Thankyou, sir
@19divide53 Жыл бұрын
Doe the method work if the RHS is replaced by sin(p(n)) where p is a polynomial?
@tomholroyd7519 Жыл бұрын
How about a_n+1 = a_n + random(-1, 1) The random part averages to 0 like sin
@TaladrisKpop Жыл бұрын
The video only finds some solutions. I would be great to show there are no other solutions. It is not too hard: if a_{n+1}=a_n+f(n), then a_n = a_1 + \sum_{k=1}^{n-1} f(k) (proof by a simple induction). Here, the sum is easy to compute as f(k) = sin(k) = Im(e^{ik})
@eduardomalacarne9024 Жыл бұрын
normally a would user complex equivalence and exponential function
@元兒醬 Жыл бұрын
1-5-7-13-17-25-31-41-49............ I've found it an interesting number series , Do you mind introducing it ?
@holyshit922 Жыл бұрын
I would probably use generating function (ordinary generating function is enough , no need for exponential generating function)
@bjornfeuerbacher5514 Жыл бұрын
One could rewrite the coefficient of cos(n) a bit: 2 cos(n) - 2 = -4 ( 1/2 - 1/2 cos(n) ) = -4 sin²(1/2), so the coefficient becomes -sin(1)/4sin²(1/2).
@stevenmellemans7215 Жыл бұрын
This one looks a bit handwaved to me.
@theevermind Жыл бұрын
It seems odd to call it "solving" the sequence. Finding a general form of a sequence isn't "solving" IMO.
@soupisfornoobs4081 Жыл бұрын
Can you tell us what you think solving the sequence is? I genuinely don't know what you're referring to