A Quick and Easy Exponential Equation | iˣ = 1

  Рет қаралды 11,128

SyberMath

SyberMath

Күн бұрын

🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts)
Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
/ @sybermathshorts
⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
My merch → teespring.com/...
Follow me → / sybermath
Subscribe → www.youtube.co...
Subscribe → www.youtube.co... (shorts)
⭐ Suggest → forms.gle/A5bG...
If you need to post a picture of your solution or idea:
in...
iˣ = 1, i^x=1
#ChallengingMathProblems #ExponentialEquations #Exponentials #ComplexNumbers
via @KZbin @Apple @Desmos @NotabilityApp @googledocs @canva
An Interesting Exponential Equation with x^x^x: • An Interesting Exponen...
Solving A Challenging Exponential Equation: • Solving A Challenging ...
PLAYLISTS 🎵 :
Number Theory Problems: • Number Theory Problems
Challenging Math Problems: • Challenging Math Problems
Trigonometry Problems: • Trigonometry Problems
Diophantine Equations and Systems: • Diophantine Equations ...
Calculus: • Calculus

Пікірлер: 46
@moeberry8226
@moeberry8226 Жыл бұрын
It’s not just multiples of 4, the general form is 4n/(4K+1) where n and k are integers.
@musicsubicandcebu1774
@musicsubicandcebu1774 Жыл бұрын
Why?
@moeberry8226
@moeberry8226 Жыл бұрын
@@musicsubicandcebu1774 because Syber only gave the base case of i, it can be written as e^i(pi/2 +2kpi). Where k is an integer and can be different from n. You can try it and see that it works.
@Qermaq
@Qermaq Жыл бұрын
If n and k are 1, this implies 1^(4/5) = 1. While WA does give this an an answer, the top result is cos(2pi/5) + 1sin(2pi/5). I wonder why the real result is buried here.
@moeberry8226
@moeberry8226 Жыл бұрын
@@Qermaq because Wolfram Alpha gives all complex roots of 1.
@SyberMath
@SyberMath Жыл бұрын
My understanding based on what @usdescartes said in a comment: i^(4n)=1 so i^4=1 for n=1 However, i^(4/5)=(i^4)^(1/5)=1^(1/5) and this is multi-valued...one of its values is 1 but it's not always 1. I'm new to this so I am not saying this with utmost confidence
@gheffz
@gheffz Жыл бұрын
Well done. Great explanation. Very clear.
@SyberMath
@SyberMath Жыл бұрын
Glad it was helpful!
@horaciovillegasarango3278
@horaciovillegasarango3278 Жыл бұрын
Muchas gracias Profesor!
@mitri4939
@mitri4939 Жыл бұрын
Another fun problem and another great video! May I ask where you got your education in Mathematics?
@SyberMath
@SyberMath Жыл бұрын
TR. Thanks!
@RexxSchneider
@RexxSchneider Жыл бұрын
But i = i * 1, so the general polar representation of i is e^(2mπi + πi/2), making i^x = e^((2mπi + πi/2)x). We set that equal to e^(2nπi), which is 1. Taking natural logs, we have: (2mπi + πi/2)x = 2nπi. That gives the general form x = 2nπi / (2mπi + πi/2) which simplifies to x = 4n / (4m + 1). Now the question arises whether the m and n are independent. If m = 0, then n can be any integer as shown in the video, since i^x = e^(πi/2*4n) = e^(2nπi) = 1 for all n ∈ ℤ. If m = 1, then x = 4n/5 and i^x becomes e^((2πi + πi/2) * 4n/5) = e^(8nπi/5 + 2nπi/5) = e^(10nπi/5) = e^(2nπi) = 1 for all n ∈ ℤ. if m = 2, then x = 4n/9 and i^x = e^((4πi + πi/2) * 4n/9) = e^(16nπi/9 + 2πi/9) = e^(2nπi) = 1 for all n ∈ ℤ. And so on. In other words, if we choose to write i as i^(4m+1) -- which we always can -- then we find that the general solution to i^(4m+1)x = 1 will be of the form x = 4n/(4m+1).
@Roq-stone
@Roq-stone Жыл бұрын
Fallacy. Recheck your work. The basis is false.
@vaibhavjoshi5018
@vaibhavjoshi5018 Жыл бұрын
Please solve JEE Advance and maths Olympiad tough questions for application and concepts building.
@kianmath71
@kianmath71 Жыл бұрын
X = 4k, in which k is an integer, great video as always
@vladimirrodriguez6382
@vladimirrodriguez6382 Жыл бұрын
Maybe for more generality of the solution, i=e^(pi/2+2kpi), k in Z. So the solution is: x=2n/(1/2+2k)=n/(1/4+k), n and k in Z.
@goldfing5898
@goldfing5898 Жыл бұрын
x = 4 is a solution, because i^4 = (i^2)^2 = (-1)^2 = 1. Also, multiples of four. Let n = 4k, then i^n = i^(4*k) = (i^4)^k = 1^k = 1. Does this also hold for k = 0, -1, -2,... ?
Жыл бұрын
Yes, because the absolute value doesn't change for 1 and 1^(-1) = 1/1 = 1.
@rakenzarnsworld2
@rakenzarnsworld2 Жыл бұрын
x = 4n (n is integer)
@mathswan1607
@mathswan1607 Жыл бұрын
x=4n
@Roq-stone
@Roq-stone Жыл бұрын
But, if I=sqrt (-1) and (-1)^2=1 then it strictly follows that i^4n ,such that n is integer including zero, would equal 1. And all odd powers are imaginary and all 2n ≠ 4m, for all n,m members of integers, would be negative. So, we are sure, we capture all values of x for i^x = 1.
@jonnoring7225
@jonnoring7225 Жыл бұрын
Hmmm, I get x = 2m/(1+4n), where m and n are any integers. Will have to redo my work.
@Packerfan130
@Packerfan130 Жыл бұрын
you're half right since x = 4m/(1+4n) is correct
@bertrandviollet8293
@bertrandviollet8293 Жыл бұрын
I don't understand, i should also be written as e^i(pi/2 +2n×pi)
@taxttime6216
@taxttime6216 Жыл бұрын
I am really wondering if the equation was i^x=-1 What is the value of x in the form of n As i^x=1 (x =4n)
@taxttime6216
@taxttime6216 Жыл бұрын
I got the answer
@DeJay7
@DeJay7 Жыл бұрын
x = 4n + 2, for natural numbers n
@RexxSchneider
@RexxSchneider Жыл бұрын
In simplest terms, we can see that we can set e^((πi/2)x) = e^(2nπi + πi), because e^(2nπi + πi) = -1 where n ∈ ℤ. So x = (2nπi + πi) / (πi/2) = 4n+2. However, we can write i as i^5 = i^9, etc. In general i = i^(4m+1) where m ∈ ℤ. So depending on how we write i, we will find some more solutions of the form x = (4n+2)/(4m+1), which are the solutions of i^(4m+1)^x = -1.
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
4,8...
@alextang4688
@alextang4688 Жыл бұрын
use polar form???🤔🤔🤔🤔🤔🤔
@Packerfan130
@Packerfan130 Жыл бұрын
i^x = 1 i = e^(pi/2 + 2pi N)i 1 = e^(2pi M)i where N and M are integers i^x = 1 e^(pi/2 + 2pi N)ix = e^(2pi M)i (pi/2 + 2pi N)ix = (2pi M)i ((1/2) + 2N)x = 2M (4N + 1)x/2 = 2M x = 4M/(4N+1)
@РоманМоскаленко-л6р
@РоманМоскаленко-л6р 9 ай бұрын
смешно. что то там считает. на комплексной плоскости i это 90, i^2 =-1, следовательно нам надо ещё столько же. то есть i^4=1.
@rubinkatz9850
@rubinkatz9850 Жыл бұрын
weird, ad for a BNW model iX
@ВиталийКуранов-ю8я
@ВиталийКуранов-ю8я Жыл бұрын
x=n/4; x=4n 😁
@SyberMath
@SyberMath Жыл бұрын
😄
@mircoceccarelli6689
@mircoceccarelli6689 Жыл бұрын
i^x = 1 x = ? x = 4 n , n € Z . n numero intero !!!!! 😊
@ertugrulberatbilici
@ertugrulberatbilici Жыл бұрын
X=4n
@loblud4437
@loblud4437 Жыл бұрын
i*i*i*i= 1
@monkeblazer3154
@monkeblazer3154 Жыл бұрын
bruh x = 4 or 0
@yttyw8531
@yttyw8531 Жыл бұрын
Or 8 or 12...
@Greenwood394
@Greenwood394 Жыл бұрын
The general solution is 4n
@monkeblazer3154
@monkeblazer3154 Жыл бұрын
@@yttyw8531 yea yea multiples of 4 are valid sorry forgot to mention and thanks for mentioning
@Packerfan130
@Packerfan130 Жыл бұрын
@@Greenwood394 the general solution is 4n/(4m+1)
@epsilonxyzt
@epsilonxyzt Жыл бұрын
Too much talk.
@trojanleo123
@trojanleo123 3 ай бұрын
x = 4n
Solving An Exponential Equation for All Solutions
8:48
SyberMath
Рет қаралды 8 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Perfect Shapes in Higher Dimensions - Numberphile
26:19
Numberphile
Рет қаралды 5 МЛН
A Complex Exponential Equation | iˣ = 2
9:46
SyberMath
Рет қаралды 11 М.
Solving An Interesting Exponential Equation
10:17
SyberMath
Рет қаралды 12 М.
how is i^x=2 possible?
8:36
blackpenredpen
Рет қаралды 281 М.
A Very Nice Exponential Equation
8:51
SyberMath
Рет қаралды 2,3 М.
Sum from 1 to infinity of 1/(k^2+1)
7:16
mathemagical
Рет қаралды 8 М.
Animation vs. Math
14:03
Alan Becker
Рет қаралды 80 МЛН
Finding Square Roots of i | Complex Numbers
9:19
SyberMath
Рет қаралды 14 М.
I Solved a Very Irrational Equation
8:43
SyberMath
Рет қаралды 40 М.
The strange cousin of the complex numbers -- the dual numbers.
19:14
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН