In triangle ABD cos(ADB)=(28²+26²-30²)/(2*28*26)=5/13 and according to Kashi's theorem in triangle ADC we have AC²=26²+35²-2*26*35*cos(ADC)=26²+35²-2*26*35*(-5/13)=2601 and from it AC=x=51
@imetroangola1717 күн бұрын
*Solução:* Seja a área [ABD]=L. Usando a fórmula de Heron no ∆ABD: p= (30 + 26+ 28)/2 = 42 L= [42.(42-30)(42-28)(42-26)]½ L = (42 × 12 × 14 × 16)½ L= (2×3×7×2²×3×2×7×2⁴)½ L= (2⁸×7²×3²)½ = 2⁴×7×3= *L = 336.* Por outro lado, seja h a altura do triângulo ABC traçada do vértice A até o ponto Q pertencente ao segmento BD. logo: h × BD/2 = L h= 336 × 2/ 28 → *h = 24.* Por Pitágoras no ∆AQD: QD² = AD² - h² = 26² - 24² = 10² QD=10. Por Pitágoras no ∆APC: x² = h² + PC² = h² + (QD + DC)² x² = 24² + (10 + 35)² x² = 576 + 2025 = 2601 x = 2601½ → *x = 51 unidades.*
@raghvendrasingh128917 күн бұрын
cos ADB = (169+196-225)/(2×13×14) = 5/13 AM = 26×(12/13) = 24 DM = 10 MC = 45 , x^2 = 576+2025 = 2601 x = 51 second method x^2 = 26^2+35^2+2×26×35×(5/13) = 676+ 1225+700 = 2601 x = 51
@davidellis192910 күн бұрын
There's an incredibly easy solution if you know your Pythagorean triangles, their multiples, and how they fit together. ABD is double the well-known 13-14-15 triangle, which can be viewed as a 9-12-15 right triangle (triple the Pythagorean 3-4-5) back to back with a Pythagorean 5-12-13 triangle, sharing a leg of length 12. Then the altitude AM from A to BC is double the length 12, or 24. Triangle AMD is double the 5-12-13, so MD=10. Now in right triangle AMC, AM=24 and MC=10+35=45, which are triple the legs of the well-known Pythagorean 8-15-17 triangle, so x=AC=3*17=51. This insight enabled me to solve the problem without writing anything!
It can be solved by applying Heron's theorem three times. First, we apply Heron's theorem to ΔABD. Let sides a, b, c be 26, 28, 30. The semi-perimeter is s = (a + b + c)/2 = (26 + 28 + 30)/2 = 84/2 = 42. So, area is √(s(s-a)(s-b)(s-c)) = √(42(42 - 26)(42 - 28)(42 - 30)) = √(112896) = 336. Using CD as the base, ΔACD has the same height as ΔABD, but its base is 35/28 = 5/4 times as long, so it has area (5/4)(336) = 420. Apply Heron's formula with a, b, c = 35, 26, x. s = (x + 61)/2, s - a = (x - 9)/2, s - b = (x + 9)/2, c = 61 - x)/2. We find (s - a)(s - b) = (x² - 81)/4 and s(s - c) = (61² - x²)/4 = (3271 - x²)/4. So, √(s(s-a)(s-b)(s-c)) = √(((3271 - x²)/4)((x² - 81)/4)). Let m = x². Then, area = √(((3271 - m)/4)((m - 81)/4)) = √((-m² +3802m - 301401)/16) = (1/4)√(-m² +3802m - 301401). So, (1/4)√(-m² +3802m - 301401) = 420, √(-m² +3802m - 301401) = 1680, -m² +3802m - 301401 = 2822400, m² - 3802m + 3123801 = 0, (m - 2601)(m - 1201) = 0. So, x = √(2601) = 51 or x = √(1201) or approx. 34.66. Heron's formula is applied again to ΔABC to determine if either root is valid. ΔABC's area is ((28 + 35)/(28)) = (9/4)(336) = 756. x = 51 produces the correct area, x = √(1201) does not. So, x = 51, as Math Booster also found.
@johnbrennan337217 күн бұрын
Area of triangle ABD=336( using formula). So half of |AM| by |BD| = 336 that is |AM|=24. Using pythag on triangle AMD, |MD|=10.Then using pyth. on triangle AMC, x=51.
@WahranRai17 күн бұрын
8:13 Stewart's theorem
@michaeldoerr581016 күн бұрын
Looks like I shall look up Stewart's theorem and Kashi's theorem for the second method. Also the x = 51.
@kateknowles805517 күн бұрын
Angle ADC = 180-angle ADB = 180- y (say). cosine y = (676 + 784- 900 )/(2 x 26 x 28) = 560/(56x26) = 5/13 -5/13 =( AD.AD+ DC.DC- X.X )/(2 x 26 x35) X.X = 676+1225 + 26x35x2x5/13 = 1901 + 700= 51x51 X is 51
@kateknowles805517 күн бұрын
( Rewriting : minus 5/13 = (AD.AD +DC.DC minus X.X)/ (2x26x35) )
A questão é muito boa. Parabéns pela escolha. Brasil Novembro de 2024.
@giuseppemalaguti43517 күн бұрын
ADB=α ..cos(α/2)=√(42*12/28*26)=√(9/13)...x^2=26^2+35^2-2*26*35cos(180-α)=676+1225+1820cos(2arccos(√9/13))=676+1225+1820(2*9/13-1)=676+1225+700=2601..x=√2601...boh, spero di non sbagliare...ah ah
@ritwikgupta365517 күн бұрын
What is the name of the rule in the 2nd method? Very useful. I have not seen it before.
@WahranRai17 күн бұрын
Stewart's theorem
@ritwikgupta365517 күн бұрын
@WahranRai thanks
@davidellis192910 күн бұрын
You can prove Stewart's theorem by using the Law of Cosines on the two supplementary angles at the base of the interior segment.
@nenetstree91417 күн бұрын
51
@yakupbuyankara590316 күн бұрын
X=51
@nantesloire16 күн бұрын
Meister es ist nicht x².4 sondern 4x² .... immer die Zahlen vor Parameter.