If you like the videos and would like to support the channel: www.patreon.com/Maths505 You can follow me on Instagram for write ups that come in handy for my videos: instagram.com/maths.505?igshid=MzRlODBiNWFlZA==
@MrWael1970 Жыл бұрын
Thank you for this stunning solution.
@kkanden Жыл бұрын
can't wait to flex on other people with the party trick
@fartoxedm5638 Жыл бұрын
Such a wonderful result! For some reason I was sure that we want to evaluate the resulting integral at a = 1(bruh) so I dropped this idea and started regular series expansion analysis. I did the substitution x = e^u, than divided it into parts (-oo, o), (0, oo) and solved them using series expansion of 1/(1 + x) (very uncommon method by the way!) And the result was.... quite nice! It gave me the series in terms of (-1)^(n + 1) / (1 + n * s)^2 where n goes from -oo to oo So by accident I've discovered that sum((-1)^(n + 1) / (1 + n * s)^2, -oo, oo) = -pi^2 / s^2 * csc(pi/s) * cot(pi / s)... And I'm pretty satisfied with that result, you saved my evening. Thanks! Also as far as my strong (desmos) analysis can tell they are equal at every point(not only at (1, oo))!!!!
@fartoxedm5638 Жыл бұрын
I want to believe it was not so obvious....
@maths_505 Жыл бұрын
Nice work bro
@fartoxedm5638 Жыл бұрын
For those who interested, I was able to prove that pi^2 / s^2 * csc^2(pi / s) = sum(1/(1 + n * s)^2, -oo, oo) (it implies from taking the derivative of cot(pi/s) series(Euler one))). So we have another beautiful result that sum(1/(1 + n * s)^2, -oo, oo) * cos(pi/s) = sum((-1)^n / (1 + n * s)^2, -oo, oo)!
@maths_505 Жыл бұрын
Beautiful indeed
@slavinojunepri7648 Жыл бұрын
Cool result Indeed
@danielc.martin Жыл бұрын
I have a question: for f convergent in the next situation, lim n->infinity integral(from -inf to inf) of (f) /(1+x^n)? Thanks
@nicogehren6566 Жыл бұрын
very nice
@manstuckinabox3679 Жыл бұрын
It came to the point I can do these things mentally now. thank you Mathematics five-hundred fifty five. btw: both these integrals are what the cool kids call "A Gamelin Classic". found on the chapter of Contour integration with multi-valued functions.
@appybane8481 Жыл бұрын
505=five-hundred and five
@manstuckinabox3679 Жыл бұрын
@@appybane8481 Yeah the classes were full, so I had to take Maths 555 instead.
@maths_505 Жыл бұрын
@@manstuckinabox3679 😂😂😂
@jiahao2709 Жыл бұрын
are you doing this in your mobile or?
@maths_505 Жыл бұрын
Yup
@maths_505 Жыл бұрын
Still on the phone...
@thomasblackwell9507 Жыл бұрын
This looks familiar to one of your previous posts or maybe I am just going senile. You never can tell with all the math!
@maths_505 Жыл бұрын
It is exactly that post but I messed up the result at the end so I wanted to redo it
@thomasblackwell9507 Жыл бұрын
@@maths_505 Thanks, I thought that I was losing my mind “again” when I saw this post. I appreciate the quick response.
@maths_505 Жыл бұрын
@@thomasblackwell9507 my friend we're interested in tough calculus problems for applied math.... I'm pretty sure we both lost sanity a long while back😂
@thomasblackwell9507 Жыл бұрын
@@maths_505 Then it is nice to know that I am in good company, I thank you.
@aravindakannank.s. Жыл бұрын
I was about to comment on no video again
@yoav613 Жыл бұрын
Noice and easy
@giuseppemalaguti435 Жыл бұрын
I=I'(0)...I(a)=1/sB(a+1/s,1-a+1/s)....but i dont know the derivate....with geometric series I=(2s-s^2)S[(-1)^k(2k+1)/((ks+1)((k+1)s-1))^2] ,s>1..poi non riesco più a semplificare
@jeffreyrodrigoecheverria2613 Жыл бұрын
I got the answer to be: (π^2 (sec^2(π/(2s)) - csc^2(π/(2s))))/(4*s^2)
@robertsandy3794 Жыл бұрын
Have you considered renaming your channel to something like: Gamma Boi Gammera Gamma Beta .......
@maths_505 Жыл бұрын
😂😂😂 That would be injustice to all the series expansions I use😂