Abstract Algebra | Cayley's Theorem

  Рет қаралды 27,478

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 34
@howmathematicianscreatemat9226
@howmathematicianscreatemat9226 4 жыл бұрын
Its so sad you dont get more views. You really teach outstandingly.
@juniorochoazavalza228
@juniorochoazavalza228 3 жыл бұрын
He does good work and gets good views for his content, the thing is that as farther in the world of pure math you get the less people can understand and the less views in general you will have as a KZbin instructor.
@simonjech8060
@simonjech8060 Жыл бұрын
​@@juniorochoazavalza228Well, not only pure math students watch these videos. I am physics student and I learn group theory and abstract algebra for its aplications in physics like in quantumn mechanics or QFT.
@ignacioarroyo3385
@ignacioarroyo3385 Жыл бұрын
Best math KZbin channel
@matematicaspanish8301
@matematicaspanish8301 4 жыл бұрын
I want that blackboard erasing superpower...
@georgettebeulah4427
@georgettebeulah4427 4 жыл бұрын
This make so much sense and meaning and do understand what to write
@rezaasad593
@rezaasad593 3 жыл бұрын
Outstanding is indeed the best word to describe your teaching!
@NicolasMiari
@NicolasMiari 3 ай бұрын
Saving to Favorites because Cayley's Theorem is so fundamentla to Group Theory.
@viennasovello4623
@viennasovello4623 3 жыл бұрын
Excellent explanation,sir
@formaselementales8744
@formaselementales8744 3 жыл бұрын
Good explanation, i m Working on that theorem
@leonardomessore7950
@leonardomessore7950 7 ай бұрын
Great explanation, thank you.
@coolclips101
@coolclips101 2 ай бұрын
Thank you for your videos
@Abisha18UMA037
@Abisha18UMA037 7 ай бұрын
Outstanding sir
@polvoazul
@polvoazul 2 ай бұрын
Great video!
@3attaaroo
@3attaaroo 4 жыл бұрын
really AWESOME!!!! THANKS a lot
@ThaiNguyen-wp6by
@ThaiNguyen-wp6by 3 жыл бұрын
Can you please do an example on how to find a subgroup of S6 that is isomorphic to D3?
@jayantanayak4981
@jayantanayak4981 3 жыл бұрын
Thank you so much for this ❤️
@tuanvuhoang4853
@tuanvuhoang4853 7 ай бұрын
If G=Z, the mapping x->10x won't surjective
@PraniGopu
@PraniGopu 3 жыл бұрын
Finally clear. You are epic!
@09_dimashendrico21
@09_dimashendrico21 2 жыл бұрын
thanks a lot sir!
@maxdemuynck9850
@maxdemuynck9850 2 жыл бұрын
nice video!
@gaaraofddarkness
@gaaraofddarkness 4 жыл бұрын
Hello sir, I tried to follow your steps with the group = Z4 (Integers mod 4), under multiplication. But I cannot verify that λg is injective (one-to-one). For eg. λ2(0)=2*0=λ2(2)=2*2=4=0. But 0 is not equal to 2 and thus the mapping is not injective. Can you pls help me with this confusion??
@thomaspickin9376
@thomaspickin9376 4 жыл бұрын
The Integers mod 4 is not a group under multiplication; there is no multiplicative inverse for 0 as no x*0 = 1 (the identity) in the set and every element must have an inverse for it to be a group. If you remove the element {0} it is still not a group as 2*2=0 which is not in the set so you wouldn't have Closure. The integers mod 5 (without 0) however would work.
@mathmagic199
@mathmagic199 4 жыл бұрын
@@thomaspickin9376 but in z4 not only 0 , the element 2 also has no inverse
@sour5blue
@sour5blue 2 жыл бұрын
@@mathmagic199 to make the group of the integers under multiplication you have to discludr all elements with no multiplicative inverses, all the elements that are not coprime to 4, so just 1 and 3
@amirrezafahimi
@amirrezafahimi 2 жыл бұрын
You're amazing
@babasingh6606
@babasingh6606 2 жыл бұрын
Can you show the permutations of this permutation group you name with Lambda? What are the actual permutations? And what groups are isomorphic? You keep naming groups without giving their elements, and using a bunch of variables and indexes as pseudo group elements, without giving the actual groups. What is the "group law" you mention and then don't define? Really hard to follow you if you don't define your objects
@somshekharrakhe6224
@somshekharrakhe6224 Жыл бұрын
It depends on the chosen group. Whichever group you choose, its corresponding permutations are generated by the same operation which is followed by the group. For instance, in the example given in the video, the operation used to generate the permutations is of the group Z3, which is addition modulo 3. However, note that the permutations as a whole form a group under function composition. Summary of the story is that using the elements of a given group and its binary operation, you can produce a permutation group which is isomorphic to the original group.
@jakobb.4214
@jakobb.4214 Жыл бұрын
nice video
@stewartcopeland4950
@stewartcopeland4950 4 жыл бұрын
general question: do you intend to approach the generalized coordinates and to treat some cases of analytical mechanics ?
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
I assume you mean in my multivariable calculus videos? Once I finish all of the material associated with the current course I am teaching I plan to push into further directions -- general statements of vector calculus theorems in arbitrary dimensions and such.
@stewartcopeland4950
@stewartcopeland4950 4 жыл бұрын
@@MichaelPennMath I was thinking rather of establishing differential equations describing movements of particular systems, such as the double pendulum with 2 degrees of freedom, but perhaps this is no longer a matter of math but of physics
Abstract Algebra | Direct product of groups.
12:57
Michael Penn
Рет қаралды 12 М.
Cayley's Theorem Explanation: Every Group is a Permutation Group
13:47
Чистка воды совком от денег
00:32
FD Vasya
Рет қаралды 2,8 МЛН
Как Я Брата ОБМАНУЛ (смешное видео, прикол, юмор, поржать)
00:59
Abstract Algebra | The classification of cyclic groups.
17:43
Michael Penn
Рет қаралды 6 М.
Abstract Algebra 6.4: Cayley's Theorem
7:39
Patrick Jones
Рет қаралды 6 М.
Proof of Cayley's Theorem | Abstract Algebra
9:54
Wrath of Math
Рет қаралды 1,5 М.
Abstract Algebra is Impossible Without These 8 Things
14:10
Teaching myself abstract algebra
14:41
Zach Star
Рет қаралды 277 М.
Prelude to Galois Theory: Exploring Symmetric Polynomials
32:34
Martin Trifonov
Рет қаралды 46 М.
a twist on a classic circle problem
13:58
Michael Penn
Рет қаралды 9 М.
Abstract Algebra | Group Isomorphisms
12:46
Michael Penn
Рет қаралды 24 М.
Algebra - It's not what you think it is!
22:07
Sheafification of G
Рет қаралды 16 М.
301.5I Cayley's Theorem for Finite Groups
10:43
Matthew Salomone
Рет қаралды 4,6 М.