Activation Functions - EXPLAINED!

  Рет қаралды 126,983

CodeEmporium

CodeEmporium

Күн бұрын

Пікірлер: 164
@desalefentaw8658
@desalefentaw8658 4 жыл бұрын
wow, one of the best highlights of activation functions on the internet. Thank you for doing this video
@ranchokastudent1473
@ranchokastudent1473 2 күн бұрын
This video has been immensely helpful! i was struggling with grasping the concept of activation functions but thanks to your video I was able to understand it within minutes. Thanks a lot!
@GauravSharma-ui4yd
@GauravSharma-ui4yd 4 жыл бұрын
Awesome as always. Some points to ponder correct me if I am wrong 1. Relu is just not a activation but can also be thought as a self regularizer, as it offs all those neurones whose values are negative, so it's just a kind of automatic dropout. 2. A neutral net with just input and output layer, with softmax at the output layer is logistic regression, but when we add hidden layers in this network with no hidden activations then it's more Powerful than just vanilla logistic regression as it is now taking linear combination of linear combinations with different weight settings. But it still results in linear boundaries. Lastly your contributions to the community is very valuable, clears a lot nitty-gritty details in short time. Keep going like this :)
@generichuman_
@generichuman_ 2 жыл бұрын
No, dropout is different. Random sets of neurons are turned off in order to cause the neurons to form redundancies which can make the model more robust. In the case of dying Relu, the same neurons are always dead, making them useless. Dropout is desirable and deliberate, dying Relu is not.
@linuxbrad
@linuxbrad Жыл бұрын
7:48 "once it hits zero the neuron becomes useless and there is no learning" this explains so much, thank you!
@UdemmyUdemmy
@UdemmyUdemmy Жыл бұрын
the screetching noise is irrtitaing..else nice tutoial
@prakharmishra-m5r
@prakharmishra-m5r 7 ай бұрын
I agree
@malikkashifsaeed1938
@malikkashifsaeed1938 5 ай бұрын
agreed. cringe and irritating
@semon00
@semon00 5 ай бұрын
I don't agree
@otabeknajimov9697
@otabeknajimov9697 Жыл бұрын
best explanation of activation functions I ever seen
@lex8799
@lex8799 Ай бұрын
Very clear, thanks bro, you’re heaven sent !
@jhondavidson2049
@jhondavidson2049 4 жыл бұрын
I'm learning deep learning rn and using the deep learning book published by MIT press for the same. That's kinda complicated for me to understand especially these parts cause m still an undergrad and have 0 previous experience with this. Thank you for explaining this so well.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Anytime :)
@SkittlesWrap
@SkittlesWrap 9 ай бұрын
Straight to the point. Nice and super clean explanation for non-linear activation functions. Thanks!
@x_ma_ryu_x
@x_ma_ryu_x 2 жыл бұрын
Thanks for the tutorial. I found the noises very cringe.
@PrymeOrigin
@PrymeOrigin Жыл бұрын
One of the best explanations ive come across
@adrianharo6586
@adrianharo6586 3 жыл бұрын
Great video! The dissapointed gestures were a bit too much x'D A question I did have as a beginner was. What does it mean for a sigmoid gradient to "squeeze" values, as in they become smaller and smaller as they back propagate?
@AnkityadavGrowConscious
@AnkityadavGrowConscious 3 жыл бұрын
It means that sigmoid function will always output a value between 0 and 1 regardless of any real number input. Notice the mathematical formula and graph of a sigmoid function for better clarity. Any real number will be converted to a number between 0 and 1. Hence sigmoid is said to "squeeze" values.
@deepaksingh9318
@deepaksingh9318 4 жыл бұрын
Wow... Perfect and easiest way to explain it.. Everyone talks about what activations do but nobody shows in how actually it looks like behind the algos.. And you explain things in the most easiest way which are so easy to understand and remember.. So a big like for. All your videos.. Could uh make more and more and DL.. 😄
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Thank you. I'm always thinking of more content :)
@linuxbrad
@linuxbrad Жыл бұрын
9:03 what do you mean "most neurons are off during the forward step"?
@epiccabbage6530
@epiccabbage6530 Жыл бұрын
What are the axises on these graphs? Is it inputs, input*weights + bias for linear?
@NITHIN-tu7qo
@NITHIN-tu7qo 11 ай бұрын
did you get answer for it?
@fahadmehfooz6970
@fahadmehfooz6970 3 жыл бұрын
Amazing! Finally I am able to visualise vanishing gradient descent and dying relu.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Glad!
@PritishMishra
@PritishMishra 3 жыл бұрын
The most thing I love about your videos is the fun you add... Learning becomes a bit easier
@nguyenngocly1484
@nguyenngocly1484 4 жыл бұрын
With ReLU f(x)=x is connect, f(x)=0 is disconnect. A ReLU net is a switched system of dot products, if that means anything to you.
@AmirhosseinKhademi-in6gs
@AmirhosseinKhademi-in6gs 2 жыл бұрын
but we cannot use ReLU for the regression of functions with high degrees of derivatives! In that case, we should still go with infinitely differentiable activation functions like "Tanh", right?
@oheldad
@oheldad 4 жыл бұрын
Great video ! And what is more great - are the useful references you add at the description. ( For me (1)+(7) answer the questions I asked my self at the end of your video - so its was on point ) ! Thank you !
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Haha. Glad the references are useful! :)
@deepakkota6672
@deepakkota6672 4 жыл бұрын
Wooo, Did I just noticed the complex explained simple. Thanks! Looking forward to more videos.
@kanehooper00
@kanehooper00 8 ай бұрын
Excellent job. There is way too much "mysticism" around neural networks. This shows clearly that for a classification problem all the nerual net is doing is creating a boundary function. Of course it gets complicated in multiple dimensions. But your explanations and use of graphs is excellent
@wucga9335
@wucga9335 Жыл бұрын
so how do we know when to use relu or leacky relu? do we just use leacky relu all together in all cases?
@dazzykin
@dazzykin 4 жыл бұрын
Can you cover tanh activation? (Thanks for making this one so good!)
@CodeEmporium
@CodeEmporium 4 жыл бұрын
I wonder if there is enough support that warrants a video on just tanh. Will look into it though! And thanks for the compliments :)
@AymaneArfaoui
@AymaneArfaoui 7 ай бұрын
what does x and y represent in the graph you use to show the cats and dog points ?
@TheAscent_
@TheAscent_ 4 жыл бұрын
@6:24 How does passing what is a straight line into the softmax function also give us a straight line? Isn't the output, and consequently the decision boundary, a sigmoid? Or is it the output before passing it into the activation function what counts as the decision boundary?
@CodeEmporium
@CodeEmporium 3 жыл бұрын
6:45 - The line corresponds to those points in the feature space (the 2 feature values) where The sigmoid's height is 0.5.
@vasudhatapriya6315
@vasudhatapriya6315 Жыл бұрын
How is softmax a linear function here? Shouldn't it be non linear?
@shivendunsahi
@shivendunsahi 4 жыл бұрын
I discovered your page just yesterday and might I say, YOU'RE AWESOME! Thanks for such good content bro.
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Thanks homie! Will dish out more soon!
@alonsomartinez9588
@alonsomartinez9588 2 жыл бұрын
Awesome vid! Small sug: I might check the volume levels, during the screaming in :56 it was a bit painful to my ear and possibly sounded like audio clipping.
@the-tankeur1982
@the-tankeur1982 9 ай бұрын
I hate you for making that noises, i want to learn, comedia is something i would pass on
@prakharrai1090
@prakharrai1090 2 жыл бұрын
can we use linear activation with hinge loss for Linear svm for binary classification.
@Nathouuuutheone
@Nathouuuutheone 3 жыл бұрын
What decides the shape of the boundary?
@rishabhmishra279
@rishabhmishra279 2 жыл бұрын
Great explanation ! and the animations with maths formula and visualizing it is awesome !! Many thanks !
@kphk3428
@kphk3428 4 жыл бұрын
1:16 I couldn't see that there were different colors so I was confused. Also I found the voicing of the training neural net annoying. But some people may like what other people dislike, so it's up to you to keep on voicing them.
@gabe8168
@gabe8168 4 жыл бұрын
the dude is making these videos alone, if you don't like his voice that's on you, but he can't just change his voice
@mikewang8368
@mikewang8368 4 жыл бұрын
better than most professors, thanks for great video
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Thanks!!
@fazlayrabby3709
@fazlayrabby3709 3 ай бұрын
Can you please explain this "No gradient means no learning"?
@mitchfrtube
@mitchfrtube Ай бұрын
Gradient is in Charge of updating the weights in backpropagation process. If the gradient is zero = no gradient.. no update will Take place.. so.. the learning process stops. You Will add Zero to the weights and they Will be stucked remaining the Same.
@shrikanthnc3664
@shrikanthnc3664 3 жыл бұрын
Great explanation! Had to switch to earphones though :P
@MrGarg10may
@MrGarg10may Жыл бұрын
then why isn't leaky RELU ELU used everywhere in LSTM, GRU, Transformers ..? why is RELU used everywhere
@DrparadoxDrparadox
@DrparadoxDrparadox 3 жыл бұрын
Great Video. Could you explain what U and V are equal to in this equation : o = Ux + V ? And How did you come up with the decision boundary equation and how did you determine the values of w1 and w2 ? Thanks in advance
@Mohammed-rx6ok
@Mohammed-rx6ok 3 жыл бұрын
Amazing explanation and also funny 😅👏👏👏
@ronin6158
@ronin6158 4 жыл бұрын
it should be possible to let (part of) the net optimize its own activation function no?
@tarkatirtha
@tarkatirtha 2 жыл бұрын
Lovely intro! I am learning at the age of 58!
@programmer4047
@programmer4047 4 жыл бұрын
So, we should always use leaky reLU
@superghettoindian01
@superghettoindian01 Жыл бұрын
Another great video 🎉🎉🎉!
@CodeEmporium
@CodeEmporium Жыл бұрын
Thanks so much!
@RJYL
@RJYL Жыл бұрын
Great explanation for activation function I like it so much
@CodeEmporium
@CodeEmporium Жыл бұрын
Thanks so much for commenting
@rasikannanl3476
@rasikannanl3476 7 ай бұрын
great .. so many thanks ... need more explanation
@pouyan74
@pouyan74 3 жыл бұрын
I've read at least three books on ANN's so far, but it's only now, after watching this video, that I have the intuition of what exactly is going on and how do activation functions break linearity!
@alifia276
@alifia276 3 жыл бұрын
Thank you for sharing! This video cleared my doubts and gave me a good introduction to learn further
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Super glad :)
@ShivamPanchbhai
@ShivamPanchbhai 3 жыл бұрын
this guy is genius
@eeera-op8vw
@eeera-op8vw 7 ай бұрын
good explanation for a beginner
@sgrimm7346
@sgrimm7346 Жыл бұрын
Excellent explanation. Thank you.
@cheseremtitus1501
@cheseremtitus1501 4 жыл бұрын
Amazing presentation ,easy and captivating to grasp
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Glad you liked it! Thank you!
@splytrz
@splytrz 4 жыл бұрын
I've been trying to make a convolutional autoencoder for mnist, and at first I used sigmoid activation on the convolutional part and it couldn't make anything better than just a black screen on the output but when I removed all activation functions it worked well. Does anyone have any idea why that happened?
@fatgnome
@fatgnome 4 жыл бұрын
Are the outputs properly scaled back to pixel values after being squeezed by sigmoid?
@splytrz
@splytrz 4 жыл бұрын
@@fatgnome Yes. Otherwise the output wouldn't match with images. Also I checked model.summary() every time I made changes to the model.
@malekaburaddaha5910
@malekaburaddaha5910 3 жыл бұрын
Thank you very much for the great, and smooth explanation. This was really perfect.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Much appreciated Malek! Thanks for watching!
@najinajari3531
@najinajari3531 4 жыл бұрын
Great Video and great page :) Which softwares you use to make these videos ?
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Thanks! I use Camtasia Studio for the editing; Photoshop and draw.io for the images.
@blackswann9555
@blackswann9555 Ай бұрын
excellent explaination
@phucphan4195
@phucphan4195 3 жыл бұрын
thank you very much, this is really helpful
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Thanks:)
@wagsman9999
@wagsman9999 Жыл бұрын
Beautiful explanation!
@fredrikt6980
@fredrikt6980 4 жыл бұрын
Great explanation. Just add more contrast to you color selection.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
My palette is rather bland i admit
@VinVin21969
@VinVin21969 4 жыл бұрын
plot twist: its not that the boundary no longer changes, the vanishing gradient cause the gradient to be very small , that we can assume it is negligible
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Danana nanana nanana nana
@meghnasingh9941
@meghnasingh9941 4 жыл бұрын
wow, that was really helpful, thanks a ton!!!!
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Glad to hear that. Thanks for watching!
@yachen6562
@yachen6562 4 жыл бұрын
Really awesome video!
@SeloniSinha
@SeloniSinha 7 ай бұрын
wonderful explanation!!!
@mohammadsaqibshah9252
@mohammadsaqibshah9252 2 жыл бұрын
This was an amazing video!!! Keep up the good work!
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Thanks so much!
@younus6133
@younus6133 4 жыл бұрын
oh man, amazing explanation.Thanks
@bartekdurczak4085
@bartekdurczak4085 7 ай бұрын
good explanation but the noises are little bit annoying but thank you bro
@keanuhero303
@keanuhero303 4 жыл бұрын
What's the +1 node on each layer?
@avijain6277
@avijain6277 3 жыл бұрын
The bias term
@myrondcunha5670
@myrondcunha5670 3 жыл бұрын
THIS HELPED SO MUCH! THANK YOU!
@simranjoharle4220
@simranjoharle4220 2 жыл бұрын
This was really helpful! Thanks!
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Thanks for watching :)
@kellaerictech
@kellaerictech 2 жыл бұрын
That's great explanation
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Thanks so much for watching !
@prashantk3088
@prashantk3088 4 жыл бұрын
really helpful..thanks
@youssofhammoud6335
@youssofhammoud6335 4 жыл бұрын
What I was looking for. Thanks!
@mangaenfrancais934
@mangaenfrancais934 4 жыл бұрын
Great video, keep going !
@yukuchan
@yukuchan 3 ай бұрын
nice video ♥
@tahirali959
@tahirali959 4 жыл бұрын
good work bro keep it up -
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Will do homie
@Edu888777
@Edu888777 3 жыл бұрын
I still dont understand what a activation function is
@aaryamansharma6805
@aaryamansharma6805 4 жыл бұрын
awesome video
@ankitganeshpurkar
@ankitganeshpurkar 4 жыл бұрын
Nicely explained
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Thanks for watching this too
@LifeKiT-i
@LifeKiT-i Жыл бұрын
With graphical calculator, your explanation is sanely clear!! thank you!!
@CodeEmporium
@CodeEmporium Жыл бұрын
Thanks so much for the kind comment! Glad the strategy of explaining is useful :)
@jigarshah1883
@jigarshah1883 4 жыл бұрын
Awesome video man !
@undisclosedmusic4969
@undisclosedmusic4969 4 жыл бұрын
Swish: activation function. Swift: programming language. More homework, less sound effects 😀
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Nice catch. I misspoke :)
@jamesdunbar2386
@jamesdunbar2386 3 жыл бұрын
Quality video!
@ExMuslimProphetMuhammad
@ExMuslimProphetMuhammad 3 жыл бұрын
Bhai video shayad accha hoga but thumbnail pe Teri pic dekhke hi kafi log click na kare, I'm here just to let you know this:avoid putting your face on thumbnail or in video as no one is interested in seeing the educator while watching technical videos.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
You clicked. That's all i care about ;)
@masthanjinostra2981
@masthanjinostra2981 3 жыл бұрын
Benefited a lot
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Awesome! Glad!
@abd0ulz942
@abd0ulz942 Жыл бұрын
learn Activation Functions with Dora but I honestly it is good
@harishp6611
@harishp6611 4 жыл бұрын
yes! I liked it. Keep it up.
@jaheerkalanthar816
@jaheerkalanthar816 2 жыл бұрын
Thanks mate
@ehsankhorasani_
@ehsankhorasani_ 3 жыл бұрын
good job thank you
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Very welcome!
@patite3103
@patite3103 3 жыл бұрын
Amazing!
@ShinsekaiAcademy
@ShinsekaiAcademy 4 жыл бұрын
thanks my man.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
You are oh so welcome
@igorpostoev2077
@igorpostoev2077 3 жыл бұрын
Thanks man)
@farhanfadhilah5247
@farhanfadhilah5247 4 жыл бұрын
this is helpful, thanks :)
@francycharuto
@francycharuto 3 жыл бұрын
gold, gold, gold.
@uzairkhan7430
@uzairkhan7430 3 жыл бұрын
awesome
@히안-p3j
@히안-p3j 5 ай бұрын
I don't understand..
@Acampandoconfrikis
@Acampandoconfrikis 3 жыл бұрын
thanks brah
@jhondavidson2049
@jhondavidson2049 4 жыл бұрын
Amazing!!!!!!!!!!!!!!!!!
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Thanks!!!!!!!!!!
@abdussametturker
@abdussametturker 4 жыл бұрын
thx. subscribed
@wadyn95
@wadyn95 4 жыл бұрын
Wtf what's the sound of pictures...
@zaidalattar2483
@zaidalattar2483 4 жыл бұрын
Perfect explanation!... Thanks
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Much appreciated!
Loss Functions - EXPLAINED!
8:30
CodeEmporium
Рет қаралды 142 М.
Why Do We Need Activation Functions in Neural Networks?
14:32
NeuralNine
Рет қаралды 3,6 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН
The Sigmoid Function Clearly Explained
6:57
Power H
Рет қаралды 116 М.
The Most Important Algorithm in Machine Learning
40:08
Artem Kirsanov
Рет қаралды 579 М.
Activation functions in neural networks
12:32
CodeEmporium
Рет қаралды 6 М.
Optimizers - EXPLAINED!
7:23
CodeEmporium
Рет қаралды 125 М.
Which Activation Function Should I Use?
8:59
Siraj Raval
Рет қаралды 264 М.
Batch Normalization - EXPLAINED!
8:49
CodeEmporium
Рет қаралды 115 М.
Watching Neural Networks Learn
25:28
Emergent Garden
Рет қаралды 1,4 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН