wow, one of the best highlights of activation functions on the internet. Thank you for doing this video
@ranchokastudent14732 күн бұрын
This video has been immensely helpful! i was struggling with grasping the concept of activation functions but thanks to your video I was able to understand it within minutes. Thanks a lot!
@GauravSharma-ui4yd4 жыл бұрын
Awesome as always. Some points to ponder correct me if I am wrong 1. Relu is just not a activation but can also be thought as a self regularizer, as it offs all those neurones whose values are negative, so it's just a kind of automatic dropout. 2. A neutral net with just input and output layer, with softmax at the output layer is logistic regression, but when we add hidden layers in this network with no hidden activations then it's more Powerful than just vanilla logistic regression as it is now taking linear combination of linear combinations with different weight settings. But it still results in linear boundaries. Lastly your contributions to the community is very valuable, clears a lot nitty-gritty details in short time. Keep going like this :)
@generichuman_2 жыл бұрын
No, dropout is different. Random sets of neurons are turned off in order to cause the neurons to form redundancies which can make the model more robust. In the case of dying Relu, the same neurons are always dead, making them useless. Dropout is desirable and deliberate, dying Relu is not.
@linuxbrad Жыл бұрын
7:48 "once it hits zero the neuron becomes useless and there is no learning" this explains so much, thank you!
@UdemmyUdemmy Жыл бұрын
the screetching noise is irrtitaing..else nice tutoial
@prakharmishra-m5r7 ай бұрын
I agree
@malikkashifsaeed19385 ай бұрын
agreed. cringe and irritating
@semon005 ай бұрын
I don't agree
@otabeknajimov9697 Жыл бұрын
best explanation of activation functions I ever seen
@lex8799Ай бұрын
Very clear, thanks bro, you’re heaven sent !
@jhondavidson20494 жыл бұрын
I'm learning deep learning rn and using the deep learning book published by MIT press for the same. That's kinda complicated for me to understand especially these parts cause m still an undergrad and have 0 previous experience with this. Thank you for explaining this so well.
@CodeEmporium3 жыл бұрын
Anytime :)
@SkittlesWrap9 ай бұрын
Straight to the point. Nice and super clean explanation for non-linear activation functions. Thanks!
@x_ma_ryu_x2 жыл бұрын
Thanks for the tutorial. I found the noises very cringe.
@PrymeOrigin Жыл бұрын
One of the best explanations ive come across
@adrianharo65863 жыл бұрын
Great video! The dissapointed gestures were a bit too much x'D A question I did have as a beginner was. What does it mean for a sigmoid gradient to "squeeze" values, as in they become smaller and smaller as they back propagate?
@AnkityadavGrowConscious3 жыл бұрын
It means that sigmoid function will always output a value between 0 and 1 regardless of any real number input. Notice the mathematical formula and graph of a sigmoid function for better clarity. Any real number will be converted to a number between 0 and 1. Hence sigmoid is said to "squeeze" values.
@deepaksingh93184 жыл бұрын
Wow... Perfect and easiest way to explain it.. Everyone talks about what activations do but nobody shows in how actually it looks like behind the algos.. And you explain things in the most easiest way which are so easy to understand and remember.. So a big like for. All your videos.. Could uh make more and more and DL.. 😄
@CodeEmporium3 жыл бұрын
Thank you. I'm always thinking of more content :)
@linuxbrad Жыл бұрын
9:03 what do you mean "most neurons are off during the forward step"?
@epiccabbage6530 Жыл бұрын
What are the axises on these graphs? Is it inputs, input*weights + bias for linear?
@NITHIN-tu7qo11 ай бұрын
did you get answer for it?
@fahadmehfooz69703 жыл бұрын
Amazing! Finally I am able to visualise vanishing gradient descent and dying relu.
@CodeEmporium3 жыл бұрын
Glad!
@PritishMishra3 жыл бұрын
The most thing I love about your videos is the fun you add... Learning becomes a bit easier
@nguyenngocly14844 жыл бұрын
With ReLU f(x)=x is connect, f(x)=0 is disconnect. A ReLU net is a switched system of dot products, if that means anything to you.
@AmirhosseinKhademi-in6gs2 жыл бұрын
but we cannot use ReLU for the regression of functions with high degrees of derivatives! In that case, we should still go with infinitely differentiable activation functions like "Tanh", right?
@oheldad4 жыл бұрын
Great video ! And what is more great - are the useful references you add at the description. ( For me (1)+(7) answer the questions I asked my self at the end of your video - so its was on point ) ! Thank you !
@CodeEmporium4 жыл бұрын
Haha. Glad the references are useful! :)
@deepakkota66724 жыл бұрын
Wooo, Did I just noticed the complex explained simple. Thanks! Looking forward to more videos.
@kanehooper008 ай бұрын
Excellent job. There is way too much "mysticism" around neural networks. This shows clearly that for a classification problem all the nerual net is doing is creating a boundary function. Of course it gets complicated in multiple dimensions. But your explanations and use of graphs is excellent
@wucga9335 Жыл бұрын
so how do we know when to use relu or leacky relu? do we just use leacky relu all together in all cases?
@dazzykin4 жыл бұрын
Can you cover tanh activation? (Thanks for making this one so good!)
@CodeEmporium4 жыл бұрын
I wonder if there is enough support that warrants a video on just tanh. Will look into it though! And thanks for the compliments :)
@AymaneArfaoui7 ай бұрын
what does x and y represent in the graph you use to show the cats and dog points ?
@TheAscent_4 жыл бұрын
@6:24 How does passing what is a straight line into the softmax function also give us a straight line? Isn't the output, and consequently the decision boundary, a sigmoid? Or is it the output before passing it into the activation function what counts as the decision boundary?
@CodeEmporium3 жыл бұрын
6:45 - The line corresponds to those points in the feature space (the 2 feature values) where The sigmoid's height is 0.5.
@vasudhatapriya6315 Жыл бұрын
How is softmax a linear function here? Shouldn't it be non linear?
@shivendunsahi4 жыл бұрын
I discovered your page just yesterday and might I say, YOU'RE AWESOME! Thanks for such good content bro.
@CodeEmporium4 жыл бұрын
Thanks homie! Will dish out more soon!
@alonsomartinez95882 жыл бұрын
Awesome vid! Small sug: I might check the volume levels, during the screaming in :56 it was a bit painful to my ear and possibly sounded like audio clipping.
@the-tankeur19829 ай бұрын
I hate you for making that noises, i want to learn, comedia is something i would pass on
@prakharrai10902 жыл бұрын
can we use linear activation with hinge loss for Linear svm for binary classification.
@Nathouuuutheone3 жыл бұрын
What decides the shape of the boundary?
@rishabhmishra2792 жыл бұрын
Great explanation ! and the animations with maths formula and visualizing it is awesome !! Many thanks !
@kphk34284 жыл бұрын
1:16 I couldn't see that there were different colors so I was confused. Also I found the voicing of the training neural net annoying. But some people may like what other people dislike, so it's up to you to keep on voicing them.
@gabe81684 жыл бұрын
the dude is making these videos alone, if you don't like his voice that's on you, but he can't just change his voice
@mikewang83684 жыл бұрын
better than most professors, thanks for great video
@CodeEmporium3 жыл бұрын
Thanks!!
@fazlayrabby37093 ай бұрын
Can you please explain this "No gradient means no learning"?
@mitchfrtubeАй бұрын
Gradient is in Charge of updating the weights in backpropagation process. If the gradient is zero = no gradient.. no update will Take place.. so.. the learning process stops. You Will add Zero to the weights and they Will be stucked remaining the Same.
@shrikanthnc36643 жыл бұрын
Great explanation! Had to switch to earphones though :P
@MrGarg10may Жыл бұрын
then why isn't leaky RELU ELU used everywhere in LSTM, GRU, Transformers ..? why is RELU used everywhere
@DrparadoxDrparadox3 жыл бұрын
Great Video. Could you explain what U and V are equal to in this equation : o = Ux + V ? And How did you come up with the decision boundary equation and how did you determine the values of w1 and w2 ? Thanks in advance
@Mohammed-rx6ok3 жыл бұрын
Amazing explanation and also funny 😅👏👏👏
@ronin61584 жыл бұрын
it should be possible to let (part of) the net optimize its own activation function no?
@tarkatirtha2 жыл бұрын
Lovely intro! I am learning at the age of 58!
@programmer40474 жыл бұрын
So, we should always use leaky reLU
@superghettoindian01 Жыл бұрын
Another great video 🎉🎉🎉!
@CodeEmporium Жыл бұрын
Thanks so much!
@RJYL Жыл бұрын
Great explanation for activation function I like it so much
@CodeEmporium Жыл бұрын
Thanks so much for commenting
@rasikannanl34767 ай бұрын
great .. so many thanks ... need more explanation
@pouyan743 жыл бұрын
I've read at least three books on ANN's so far, but it's only now, after watching this video, that I have the intuition of what exactly is going on and how do activation functions break linearity!
@alifia2763 жыл бұрын
Thank you for sharing! This video cleared my doubts and gave me a good introduction to learn further
@CodeEmporium3 жыл бұрын
Super glad :)
@ShivamPanchbhai3 жыл бұрын
this guy is genius
@eeera-op8vw7 ай бұрын
good explanation for a beginner
@sgrimm7346 Жыл бұрын
Excellent explanation. Thank you.
@cheseremtitus15014 жыл бұрын
Amazing presentation ,easy and captivating to grasp
@CodeEmporium3 жыл бұрын
Glad you liked it! Thank you!
@splytrz4 жыл бұрын
I've been trying to make a convolutional autoencoder for mnist, and at first I used sigmoid activation on the convolutional part and it couldn't make anything better than just a black screen on the output but when I removed all activation functions it worked well. Does anyone have any idea why that happened?
@fatgnome4 жыл бұрын
Are the outputs properly scaled back to pixel values after being squeezed by sigmoid?
@splytrz4 жыл бұрын
@@fatgnome Yes. Otherwise the output wouldn't match with images. Also I checked model.summary() every time I made changes to the model.
@malekaburaddaha59103 жыл бұрын
Thank you very much for the great, and smooth explanation. This was really perfect.
@CodeEmporium3 жыл бұрын
Much appreciated Malek! Thanks for watching!
@najinajari35314 жыл бұрын
Great Video and great page :) Which softwares you use to make these videos ?
@CodeEmporium4 жыл бұрын
Thanks! I use Camtasia Studio for the editing; Photoshop and draw.io for the images.
@blackswann9555Ай бұрын
excellent explaination
@phucphan41953 жыл бұрын
thank you very much, this is really helpful
@CodeEmporium3 жыл бұрын
Thanks:)
@wagsman9999 Жыл бұрын
Beautiful explanation!
@fredrikt69804 жыл бұрын
Great explanation. Just add more contrast to you color selection.
@CodeEmporium3 жыл бұрын
My palette is rather bland i admit
@VinVin219694 жыл бұрын
plot twist: its not that the boundary no longer changes, the vanishing gradient cause the gradient to be very small , that we can assume it is negligible
@CodeEmporium3 жыл бұрын
Danana nanana nanana nana
@meghnasingh99414 жыл бұрын
wow, that was really helpful, thanks a ton!!!!
@CodeEmporium4 жыл бұрын
Glad to hear that. Thanks for watching!
@yachen65624 жыл бұрын
Really awesome video!
@SeloniSinha7 ай бұрын
wonderful explanation!!!
@mohammadsaqibshah92522 жыл бұрын
This was an amazing video!!! Keep up the good work!
@CodeEmporium2 жыл бұрын
Thanks so much!
@younus61334 жыл бұрын
oh man, amazing explanation.Thanks
@bartekdurczak40857 ай бұрын
good explanation but the noises are little bit annoying but thank you bro
@keanuhero3034 жыл бұрын
What's the +1 node on each layer?
@avijain62773 жыл бұрын
The bias term
@myrondcunha56703 жыл бұрын
THIS HELPED SO MUCH! THANK YOU!
@simranjoharle42202 жыл бұрын
This was really helpful! Thanks!
@CodeEmporium2 жыл бұрын
Thanks for watching :)
@kellaerictech2 жыл бұрын
That's great explanation
@CodeEmporium2 жыл бұрын
Thanks so much for watching !
@prashantk30884 жыл бұрын
really helpful..thanks
@youssofhammoud63354 жыл бұрын
What I was looking for. Thanks!
@mangaenfrancais9344 жыл бұрын
Great video, keep going !
@yukuchan3 ай бұрын
nice video ♥
@tahirali9594 жыл бұрын
good work bro keep it up -
@CodeEmporium4 жыл бұрын
Will do homie
@Edu8887773 жыл бұрын
I still dont understand what a activation function is
@aaryamansharma68054 жыл бұрын
awesome video
@ankitganeshpurkar4 жыл бұрын
Nicely explained
@CodeEmporium4 жыл бұрын
Thanks for watching this too
@LifeKiT-i Жыл бұрын
With graphical calculator, your explanation is sanely clear!! thank you!!
@CodeEmporium Жыл бұрын
Thanks so much for the kind comment! Glad the strategy of explaining is useful :)
@jigarshah18834 жыл бұрын
Awesome video man !
@undisclosedmusic49694 жыл бұрын
Swish: activation function. Swift: programming language. More homework, less sound effects 😀
@CodeEmporium4 жыл бұрын
Nice catch. I misspoke :)
@jamesdunbar23863 жыл бұрын
Quality video!
@ExMuslimProphetMuhammad3 жыл бұрын
Bhai video shayad accha hoga but thumbnail pe Teri pic dekhke hi kafi log click na kare, I'm here just to let you know this:avoid putting your face on thumbnail or in video as no one is interested in seeing the educator while watching technical videos.
@CodeEmporium3 жыл бұрын
You clicked. That's all i care about ;)
@masthanjinostra29813 жыл бұрын
Benefited a lot
@CodeEmporium3 жыл бұрын
Awesome! Glad!
@abd0ulz942 Жыл бұрын
learn Activation Functions with Dora but I honestly it is good