Advanced RAG 01: Small-to-Big Retrieval with LlamaIndex

  Рет қаралды 13,137

Sophia Yang

Sophia Yang

Күн бұрын

Пікірлер: 33
@sivi3883
@sivi3883 Жыл бұрын
Thanks for sharing! Cannot wait to try this and see the difference in the quality of RAG output. Excited to hear more tricks in this series!!!
@danieltost
@danieltost Жыл бұрын
Loved the small to big retrieval. Simple and elegant. Awesome work Sophia!!
@whlau6191
@whlau6191 Жыл бұрын
Sophia, thanks for your sharing! Your presentation is always clear, structural and target oriented. it is so nice that you are one of the speakers in HK pycon. See you! 😊
@chukypedro818
@chukypedro818 Жыл бұрын
Awesome, I've tried your approach to RAG, and it is far better than the current Langchain RAG that I am using. You are the best, Sophia.😘
@foreignconta
@foreignconta Жыл бұрын
Actually I do not use llama_index. I have created a separate class which does cosine similarity search for my local LLM's internet search feature.. This small chunks big chunks method looks very interesting. I will watch this video again tomorrow. Very good information!! Thank you.
@SophiaYangDS
@SophiaYangDS Жыл бұрын
Nice! Thanks! Yeah the small to big retrieval methods are useful 🙌
@assouliyoussef9912
@assouliyoussef9912 6 ай бұрын
just brilliant , thank you
@TheCherryo
@TheCherryo Жыл бұрын
I thought of something similar to this but never had the time to implement it myself. I am very excited to see all the advancements in RAG and Agent-like applications. Curious to see if there is going to be specialized models that work better with RAG applications.
@ztq121121
@ztq121121 Жыл бұрын
Thank you for sharing this! I'm curious if there are any benchmarks or evaluations that quantify the extent of improvement that small-to-big retrieval can offer. Is there any research paper that we can use as reference?
@olliegooding
@olliegooding 6 ай бұрын
great explanations!
@eklok5000
@eklok5000 Жыл бұрын
Really interesting content! I am unfortunately not all that familiar with llms and those techniques so it is sometimes hard to follow. Do you have some resources to catch up on the fundamentals?
@JamesRBentley
@JamesRBentley Жыл бұрын
Another great video👍
@MakeStuffWithAI
@MakeStuffWithAI Жыл бұрын
Awesome tutorial!
@crowofhermes
@crowofhermes 11 ай бұрын
Hi first of all, thank you for the great explanations! may I ask how does the first recursive retriever differs from utilizing `HierarchicalNodeParser + AutoMergingRetriever`? I will check in detail to see if there is something else but they seem pretty similar
@dhavalthakkar5147
@dhavalthakkar5147 Жыл бұрын
Sophia, is there any langchain implementation for the above techniques?
@klaudioz_
@klaudioz_ Жыл бұрын
Amazing content!!. Thanks for sharing 🚀
@SophiaYangDS
@SophiaYangDS Жыл бұрын
Thank you 🙏😊
@amitk3098
@amitk3098 7 ай бұрын
Is there anyway I can implement this without langchain and llama-index? I am not in favor having my RAG solution dependent on them.
@sjsadjf7030
@sjsadjf7030 7 ай бұрын
Amazing video but I have a question. I would be very happy if you could respond; even though it enhances the accuracy a lot, recursive retriever takes so much time. Would persisting indexes to the disk also be a solution in this case? or is there an alternative way to reduce the time? Thank you very much!!
@sjsadjf7030
@sjsadjf7030 7 ай бұрын
oh, when I switched the embed model to default (ada-002-v2) it is now much faster, now I understand that it is not recursion related lol :D the main question has changed to how to reduce the embedding model costs haha
@avotchiezoa6627
@avotchiezoa6627 Жыл бұрын
where can i find your background video ? Which apps do you use for power point?
@liju7024
@liju7024 Жыл бұрын
I still don't understand the connection between child chunck and parent chunck. Can you explain more about it?
@Aldraz
@Aldraz Жыл бұрын
There are times when some new AI technique comes up and I am like yay.. but then I realize it's something I had implemented a year ago xD
@oguzhanzobar1094
@oguzhanzobar1094 Жыл бұрын
looks pretty cool, but I keep getting a ValueError: "Got a larger chunk overlap (200) than chunk size (128), should be smaller." when I try to run the code under "Chunk References: Smaller Child Chunks Referring to Bigger Parent Chunk".
@nathanredin7785
@nathanredin7785 11 ай бұрын
add ",chunk_overlap=20" in your splitter
@宇宙智慧學院
@宇宙智慧學院 Жыл бұрын
How to compare with graph llama index?
@user-wr4yl7tx3w
@user-wr4yl7tx3w Жыл бұрын
Is this idea associated with a publication?
@VenkatesanVenkat-fd4hg
@VenkatesanVenkat-fd4hg Жыл бұрын
Superr video, can you discuss multimodal retriever system where docs or pdf contains tables & text.
@SophiaYangDS
@SophiaYangDS Жыл бұрын
Yes thanks for the suggestions. These are on my list 🙌
@AbolfazlMahmoodi
@AbolfazlMahmoodi Жыл бұрын
How to reduce cost of openai API call?
@timmusharapov9257
@timmusharapov9257 3 ай бұрын
You're so cute 🐼
A gentle introduction to RAG (using open-source models)
50:10
Underfitted
Рет қаралды 12 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 7 МЛН
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 75 МЛН
ТВОИ РОДИТЕЛИ И ЧЕЛОВЕК ПАУК 😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 4,1 МЛН
Introduction to LlamaIndex with Python (2024)
39:57
Alejandro AO - Software & Ai
Рет қаралды 23 М.
The Best RAG Technique Yet? Anthropic’s Contextual Retrieval Explained!
16:14
LangChain - Advanced RAG Techniques for better Retrieval Performance
24:57
Coding Crash Courses
Рет қаралды 33 М.
From RAG to Knowledge Assistants
27:29
LlamaIndex
Рет қаралды 24 М.
RAPTOR - Advanced RAG with LangChain
15:43
Coding Crash Courses
Рет қаралды 10 М.
Causal Inference in Python author interview with Matheus Facure
1:00:58
What is Agentic RAG?
5:42
IBM Technology
Рет қаралды 24 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 7 МЛН